NEET 2023-24
 Answer Key Version - P (PCB NEET 2023-24)

Physics					Chemistry				
Sec. A	11. 3	22. 2	33. 3	43. 4	Sec. A	61. 4	72. 2	83. 1	93. 2
01. 1	12. 3	23. 4	34. 4	44. 3	51. 2	62. 2	73. 2	84. 3	94. 3
02. 1	13. 4	24. 1	35. 2	45. 2	52. 3	63. 3	74. 2	85. 1	95. 1
03. 4	14. 1	25. 2	Sec. B	46. 1	53. 2	64. 1	75. 1	Sec. B	96. 4
04. 3	15. 3	26. 3	36. 3	i47. 1^{99}	954.4	65. $4{ }^{\text {® }}$	76. 1	86. 1	97. 3
05. 2	16. 4	27. 2	37. 1	48. 3	55. 4	66. 3	77. 3	87. 4	98. 4
06. 4	17. 2	28. 1	38. 2	49. 4	56. 3	67. 3	78. 2	88. 4	99. 1
07. 3	18. 1	29. 3	39. 2	$50 . \quad 1$	$57 . \quad 2$	68.2	79. 2	89. 1	100. 3
08. 4	19. 2	30. 1	40. 4		58. 1	69. 1	80. 1	90. 1	
09. 3	20. 4	31. 4	41. 4		59. 3	70. 1	81. 3	91. 4	
10. 1	21. 2	32. 3	42. 4		60. 2	71. 3	82. 3	92. 2	
Biology									
Part-I	110. 3	121. 1	132. 4	142. 3	Part-II	160. 4	171. 3	182. 4	192. 1
Sec.A	111. 1	122. 4	133. 2	143. 3	Sec.A	161. 1	172. 1	183. 1	193. 2
101. 4	112. 4	123. 2	134. 4	144. 1	151. 4	162. 3	173. 2	184. 1	194. 1
102. 3	113. 3	124. 2	135. 2	145. 4	152. 2	163. 4	174. 1	185. 4	195. 3
103. 4	114. 1	125. 4	Sec. ${ }^{\text {B }}$	146. 3	153. 3	164. 3	175. 3	Sec. B	196. 1
104. 1	115. 2	126. 4	136. 2	147. 4	154. 3	165. 1	176. 2	186. 2	197. 2
105. 4	116. 4	127. 3	137. 4	148. 3	155. 4	166. 3	177. 1	187. 4	198. 4
106. 2	117. 3	128. 4	138. 1	149. 4	156. 1	167. 3	178. 3	188. 4	199. 1
107. 3	118. 2	129. 1	139. 4	150. 4	157. 3	168. 2	179. 1	189. 4	200. 2
108. 2	119. 4	130. 2	140. 4		158. 4	169. 3	180. 4	190. 1	
109. 2	120. 2	131. 3	141. 2		159. 2	170. 4	181. 2	191. 1	

PHYSICS

SECTION - A (35 Questions)

1. (1)
2. (1)
3. (4) Given, damping force \propto velocity

$$
F=k v \Rightarrow k=\frac{F}{v}
$$

Unit of $k=\frac{\text { unit of } \mathrm{F}}{\text { unit of } v}=\frac{\mathrm{kg}-\mathrm{ms}^{-2}}{\mathrm{~ms}^{-1}}=\mathrm{kgs}^{-1}$
04. (3) We know that torque $=$ Force \times Perpendicular distance. Therefore dimensions of torque $=$ Dimensions of force \times Dimension of distance $=$ $\left[\mathrm{MLT}^{-2}\right][\mathrm{L}]=\mathrm{ML}^{2} \mathrm{~T}^{-2}$. And work $=$ Force \times Distance. Therefore dimensions of work $=$ Dimensions of force \times Dimensions of distance $=$ $\left[\mathrm{MLT}^{-2}\right] \times[\mathrm{L}]$ Thus, the dimensions of torque and work are same.

Since 1999
05. (2)
06. (4) We know that moment of inertia $(I)=M K^{2}$, (where $\mathrm{M}=$ Mass of the wheel)
or $M=\frac{I}{K^{2}}=\frac{360}{(0.6)^{2}}=\frac{360}{0.36}=1000 \mathrm{~kg}$
07. (3) $S=\frac{Q}{M \times \Delta T}$, at boiling $\Delta T=0 \quad \therefore s=\infty$
08. (4) Here, $n=2, \mathrm{~T}_{1}=30^{\circ} \mathrm{C}, \mathrm{T}_{2}=35^{\circ} \mathrm{C} ; \mathrm{T}_{2}-\mathrm{T}_{1}=$ $35-30=5^{\circ} \mathrm{C}=5 \mathrm{~K}$
$\mathrm{R}=8.31 \mathrm{~J} / \mathrm{mole} \mathrm{K}, d Q=$?
As the gas in balloon is expanding at constant pressure, therefore, $d \mathrm{Q}=n C_{p} d T$

Helium is monoatomic gas with $\mathrm{C}_{\mathrm{p}}=\frac{5}{2} R$
$\therefore d Q=2 \times \frac{5}{2} R\left(T_{2}-T_{1}\right)=5 R\left(T_{2}-T_{1}\right)$
$=5 \times 8.31 \times 5=207.75 \mathrm{~J} \simeq 208 \mathrm{~J}$
09. (3) Wave velocity $v=\frac{\lambda}{T}=\frac{\omega \lambda}{2 \pi}$

Maximum particle velocity $\left(v_{\max }\right)_{\rho}=\mathrm{A} \omega$
Given, $v=\left(v_{\max }\right)_{\rho}$

$$
\frac{\omega \lambda}{2 \pi}=A \omega \Rightarrow \lambda=2 \pi A
$$

10. (1) $\mathrm{s}=u+\frac{a}{2}(2 n-1)$

$$
\begin{aligned}
& =7+\frac{4}{2}(2 \times 5-1) \\
& =7+2 \times 9=25
\end{aligned}
$$

11. (3)
12. (3) $W=\vec{F} \cdot \vec{r}=(5 \hat{i}+3 \hat{j}+2 \hat{k}) \cdot(2 \hat{i}-\hat{j})$

$$
=10-3=7 \mathrm{~J}
$$

13. (4) Work $=$ Area enclosed by F-s graph and saxis
$=\frac{35+15}{2} \times 10=250 \mathrm{~J}$
14. (1) $\tau=\frac{\Delta \mathrm{J}}{\Delta t}$. When $\tau=0, \Delta \mathrm{~J}=0$ or $\mathrm{J}=\mathrm{constant}$.
15. (3) $I=m_{B}\left(\frac{l}{\sqrt{2}}\right)^{2}+m_{D}\left(\frac{l}{\sqrt{2}}\right)^{2}+m_{C}(l \sqrt{2})^{2}$
$=m \frac{l^{2}}{2}+\frac{m l^{2}}{2}+2 m l^{2}=3 m l^{2}$

16. (4) Let θ be the final common temperature. Further, let s_{c} and s_{h} be the average heat capacities of the cold and hot (initially) bodies respectively (where $\mathrm{S}_{\mathrm{c}}<\mathrm{s}_{\mathrm{h}}$ given)

From, principle of calorimetry,
heat lost = heat gained
$s_{h}\left(100^{0} C-\theta\right)=s_{c} \theta$
$\therefore \quad \theta=\frac{s_{h}}{\left(s_{h}+s_{c}\right)} \times 100^{\circ} \mathrm{C}=\frac{100^{\circ} \mathrm{C}}{\left(1+\frac{s_{c}}{s_{h}}\right)}$
$\because s_{c} / s_{h}<1 \quad \therefore 1+s_{c} / s_{h}<2$
$\therefore \theta>\frac{100^{\circ} C}{2}$ or $\theta>50^{\circ} C$
17. (2)
18. (1) $E \propto T$, with rise of temperature kinetic energy increases.
19. (2) Loss in potential energy $=m g h$
$=2 \times 10 \times 2=40 \mathrm{~J}$
20. (4) The given statement is zeroth law of thermodynamics.
21. (2)
22. (2)

Since 1999
23. (4) Work done $=\frac{1}{2} \times$ load \times extension $=\frac{1}{2} F l$
24. (1) Young's module of a perfectly rigid body is infinite.
25. (2)
26. (3) Given, $r=5 \mathrm{~cm}=4 \times 10^{-2} \mathrm{~m}$ and $\mathrm{T}=0.2 \pi \mathrm{~s}$ We know that acceleration $a=r \omega^{2}=\frac{4 \pi^{2}}{T^{2}} r$
$=\frac{4 \times \pi^{2} \times 5 \times 10^{-2}}{(0.2 \pi)^{2}}=5 \mathrm{~ms}^{-2}$
27. (2)
28. (1)
29. (3)
30. (1) $\mathrm{F}=4 \mathrm{C}$
$\frac{F-32}{180}=\frac{C-0}{100}$
31. (4) $x=a+b t+c t^{2}$
velocity $v=\frac{d x}{d t}=0+b+c \cdot 2 t=b+2 c t$
acceleration $f=\frac{d v}{d t}=0+2 c=2 c$
32. (3)
33. (3) Given $\mathrm{H}=\mathrm{R}, \frac{u^{2} \sin ^{2} \theta}{2 g}=\frac{2 u^{2} \sin \theta \cos \theta}{g}$
$\Rightarrow \tan \theta=4 \Rightarrow \theta=\tan ^{-1}(4)$
34. (4) In each cyclic process

$$
\Delta U=U_{\text {Final }}-U_{\text {initial }}=0
$$

35.

(2) $S_{n}=u+\frac{a}{2}(2 n-1)=\frac{a}{2}(2 n-1) \quad(\because u=0)$
$S_{n+1}=\frac{a}{2}(2 n+1) \quad \therefore \frac{S_{n}}{S_{n+1}}=\left(\frac{2 n-1}{2 n+1}\right)$

SECTION - B (Attempt Any 10 Questions)

36. (3) In cyclic process $\Delta U=0$; from First law of thermodynamics $Q=\Delta U+W$.
$\therefore Q=W=-$ Area ABCA

$$
\left(\overline{\bar{D}} .-\frac{1}{2} \times(3-1) \times(5-1)=-4 J\right.
$$

37. (1)
38. (2) $\mathrm{F}=\left[\mathrm{MLT}^{-2}\right]$
39. (2) Heat required to melt whole ice $=M L$
$=80 \times 1000=80,000 \mathrm{cal}$
\therefore Heat supplied by water to cool upto $0^{\circ} \mathrm{C}$
$=1,000 \times 1 \times 80=80,000 \mathrm{cal}$
\therefore Heat supplied $=$ Heat required; whole of the ice will just melt. Temperature of the mixture is $0^{\circ} \mathrm{C}$
40. (4) Force acting on the block down the incline is
$m g \sin \theta=1 \times 10 \sin 37^{\circ}=6.018 \mathrm{~N}$
Force of friction acting up the incline is
$F=\mu R=\mu m g \cos \theta=0.8 \times 1 \times 10 \cos 37^{\circ}=6.389 \mathrm{~N}$
As $\mathrm{F}>m g \sin \theta$, the block will not slide down the incline, even when tension in the string is zero.
41. (4) For closed organ pipe, possible frequency,
$f_{n}=(2 n+1) \frac{v}{4 l}=(2 n+1) \frac{340}{4 \times 0.85}$
For $n=0, f_{0}=100 \mathrm{~Hz}$
$n=1, f_{1}=300 \mathrm{~Hz}$
$n=2, f_{2}=500 \mathrm{~Hz}$
$n=3, f_{3}=700 \mathrm{~Hz}$
$n=4, f_{4}=900 \mathrm{~Hz}$
$n=5, f_{5}=1100 \mathrm{~Hz}$
$n=6, f_{6}=1300 \mathrm{~Hz}$
Hence possible natural oscillation whose frequencies are less than 1250 Hz will be $6(n=0$, $1,2,3,4,5)$

Since 1999
42. (4) As acceleration due to gravity acts against the motion up to the highest point, hence vertical component of the velocity first decreases. But during downward motion, acceleration due to gravity acts in the direction of motion; hence vertical component of velocity then starts increasing.
43.
(4) $\mathrm{V}_{\mathrm{rms}}=\sqrt{\frac{3 R T}{M}} V_{r m s} \propto \frac{1}{\sqrt{M}}$
44.
(3) $a=\frac{\left(m_{1}-m_{2}\right) g}{\left(m_{1}+m_{2}\right)}=\frac{(10-5) g}{10+5}$ or $a=\frac{g}{3}$
45. (2) Distance for last two second
$=\frac{1}{2} \times 2 \times 10=10 \mathrm{~m}$
and Total distance $=\frac{1}{2} \times(6+2) \times 10=40 \mathrm{~m}$
46. (1) $T=2 \pi \sqrt{\frac{m}{K}}$
47. (1) $v=\frac{d x}{d t}=12-3 t^{2}=0$

If velocity is zero, $12-3 \mathrm{t}^{2}=0$ which gives $\mathrm{t}=2$ sec

For acceleration again differential equation (i)
$a=\frac{d^{2} x}{d t^{2}}=-6 t$
At time $\mathrm{t}=2 \mathrm{sec}, a=-6 \times 2=-12 \mathrm{~m} / \mathrm{s}^{2}$
Hence retardation $=12 \mathrm{~m} / \mathrm{s}^{2}$
48. (3) As is clear from figure, for the system to be in vertical equilibrium.
$F_{s}=100+20=120 \mathrm{~N}$

49. (4)
50. (1) Here, $m=10^{-2} \mathrm{~kg}, v_{0}=10 \mathrm{~m} / \mathrm{s}, \mathrm{t}=10 \mathrm{~s}$
$\mathrm{F}=-k v^{2}, k=?$
If v_{t} is velocity of body after 10 s , then
$\frac{1}{2} m v_{t}^{2}=\frac{1}{8} m v_{0}^{2} \therefore v_{t}=\frac{v_{0}}{2}=\frac{10}{2}=5 \mathrm{~m} / \mathrm{s}$
From $\mathrm{F}=-k v^{2}$
$m \frac{d v}{d t}=-k v^{2}$
$\frac{d v}{d t}=\frac{-k}{m} v^{2}=-100 k v^{2}$ or $\frac{d v}{v^{2}}=-100 k d t$
$\int_{10}^{5} \frac{d v}{v^{2}}=-100 K \int_{0}^{10} d t$
$\frac{1}{5}-\frac{1}{10}=100 k(10-0)$
$\frac{1}{10}=100 \times 10 k$
$k=10^{-4} \mathrm{~kg} \mathrm{~m}^{-1}$

CHEMISTRY

SECTION - A (35 Questions)

51. (2) Propane-1, 2,3-tricarbonitrile
52. (3) Gram molecule mass
53. (2) Molar heat capacity
54. (4) Bond angle decreases with decrease of electronegativity or with increase of size of the central atom. Thus, the order is $\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{Se}>\mathrm{H}_{2} \mathrm{Te}$.
55. (4) 3-methylheptane,
 it is optically active.
56. (3) As $\mathrm{n}_{\mathrm{Fe}}=\frac{560}{56}=10, \mathrm{n}_{\mathrm{N}_{2}}=\frac{70}{14}=5$

So, number of atoms of Fe are twice that of N -atoms.
57. (2) V.D. $=\frac{M}{2}$
58. (1) $\mathrm{sp}^{2} \mathrm{sp}^{2} \mathrm{sp} \mathrm{sp}$
$\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{C} \equiv \mathrm{CH}$
59. (3) $\mathrm{ABC}=\mathrm{CAB}$
60. (2) BF_{3} is triangular planar and $\mathrm{B}_{2} \mathrm{H}_{6}$ is a dimer of triangular planar molecule $\left(\mathrm{BH}_{3}\right)$, therefore, both of these have zero dipole moment. NH_{3} and NF_{3}, on the other hand have pyramidal structures and thus have dipole moments

In NH_{3}, the dipole moments of the three $\mathrm{N}-\mathrm{H}$ bonds reinforce the dipole moment due to pair of elctrons butin NF_{3}, the dipole moments of the three N-F bonds oppose the dipole moment due to lone pair of electrons. As a result, dipole moment of $\mathrm{NH}_{3}(\mu=1.46 \mathrm{D})$ is higher than that of NF_{3} ($\mu=0.24 \mathrm{D}$).
61. (4) $\mathrm{MnO}_{4}^{-} \rightarrow \mathrm{Mn}^{2+}$. In this reaction $5 \mathrm{e}^{-}$are needed for the reduction of Mn^{2+} as :
$\mathrm{MnO}_{4}^{-}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}$.
62. (2) $\stackrel{*}{\mathrm{~S}} \mathrm{O}_{2}=+4$
$\mathrm{H}_{2}{\stackrel{*}{\mathrm{~S}} \mathrm{O}_{4}=+6}^{*}$
$\mathrm{Na}_{2} \stackrel{*}{\mathrm{~S}}_{2} \mathrm{O}_{3}=+2$
$\mathrm{Na}_{2} \stackrel{*}{\mathrm{~S}}_{4} \mathrm{O}_{6}=+\frac{5}{2}$
63. (3) It will be more close to $575 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The value for Al should be lower than that of Mg because in case of Al, a less tightly held p-electron is to be removed while in Mg , a more tightly held s-electron is to be removed.
64. (1) $0.1 \mathrm{~mol} / \mathrm{L}$
65. (4) 4
66. (3) 2,3-dimethyl butane
67. (3) 2-phenyl-2-propanol
68. (2) The correct statement is the electron affinity of fluorine is less negative than that of chlorine.
69. (1) As combustion is always exothermic $\Delta H^{=}-\mathrm{ve}$
70. (1) (ii) and (iv) are correct
71. (3)

72. (2) (A)At. No. 60 corresponds to Nd which is a 4 f-block element.
(B) At. No. 57 corresponds to La which is a dblock element.
(C) At. No. 56 corresponds to Ba which is a sblock element.
(D) At. No. 52 corresponds to Te which is a pblock element,
73. (2) 2,3 and 4
74. (2)
75. (1) In the Henderson's equation, $\mathrm{pH}=\mathrm{pKa}+\log$ $[$ Salt $] /[$ Acid $]$ when $[$ Salt $]=[$ Acid $] \mathrm{pH}$ $=\mathrm{pKa}=9.30$
76. (1) If both assertion and reason are true and reason is the correct explanation of assertion.
77. (3) 3
78. (2) $2: 1$
79. (2)
80. (1) $\mathrm{G}=\mathrm{H}-\mathrm{T} . \mathrm{S}$

It is a single valued function of thermodynamic state of the system.
81. (3) Statement-I is correct and Statement-II is incorrect
82. (3) HCl being stronger acid undergoes dissociation as compared to acetic acid. In equimolar solution number of titrable proton in HCl is greater than present in acetic acid.
83. (1) Liquified Ga expand on solidificatin Ga is less electropositive in nature, It has the weak metallic
bond so it expand on solidification.
84. (3) Bridge bonds are longer than terminal bonds
85. (1) Ionic compounds possess high melting points and non-directional bonds.

SECTION - B (Attempt Any 10 Questions)

86. (1)

(P)
87. (4) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \rightleftharpoons 2 \mathrm{NH}_{4}^{+}+\mathrm{SO}_{4}^{-}$
$\stackrel{*}{\mathrm{~N}} \mathrm{H}_{4}^{+}$
$\mathrm{x}+4=+1 ; \mathrm{x}=1-4=-3$.
Since 1999
88. (4) $\mathrm{O}_{2}:$ Bond order $=2$, paramagnetic
$\mathrm{N}_{2}:$ Bond order $=3$, diamagnetic
H_{2} : Bond order $=1$, diamagnetic
C_{2} : Bond order $=2$, diamagnetic
89. (1) The product obtained on dehydration of (1) is conjugated and is more stable. Therefore, it is most readily dehydrated.
90.

$$
\begin{aligned}
& \text { (1) } \mathrm{N}_{\mathrm{R}}=\frac{\mathrm{N}_{\mathrm{A}} \mathrm{~V}_{\mathrm{A}}-\mathrm{N}_{\mathrm{B}} \mathrm{~V}_{\mathrm{B}}}{\mathrm{~V}_{\mathrm{T}}}=\frac{200 \times \frac{1}{10}-200 \times \frac{1}{20}}{} \\
& \mathrm{~N}_{\mathrm{R}}=\frac{1}{100}=(0.01) \\
& \mathrm{pH}=-\log _{10}\left[\mathrm{H}^{+}\right] \\
& =-\log [0.01] \\
& =2
\end{aligned}
$$

91. (4) Correct A : Ionization enthalpy is always positive.
Correct R : Energy is always absorbed when electrons are removed.
92. (2)

Both C_{1} and C_{2} have R -configuration here.
93. (2) (i) Liquid \rightleftharpoons vapour equilibrium exists at the boiling point.
(ii) Solid \rightleftharpoons liquid equilibrium exists at the melting point.
(iii) Solid \rightleftharpoons vapour equilibrium exists at the sublimation point.
(iv) Solute (s) \rightleftharpoons Solute (solution) equilibrium exists in a saturated solution.
94. (3) Availability of low lying d-orbitals is silicon
95. (1)

96. (4) Size of the orbit
97. (3) The correct statemen is : The equatorial bonds are at an angle of 120° with each other whereas axial bonds make an angle of 90° with the equatorial bonds.
98. (4) $1>3>2>4$
99. (1) $\mathrm{N} \equiv \mathrm{N}+\frac{1}{2} \mathrm{O}=\mathrm{O} \longrightarrow \mathrm{N}=\mathrm{N}=\mathrm{O}$
$\Delta \mathrm{H}_{\mathrm{f}}^{\mathrm{o}}=\Sigma \mathrm{BE}$ of reactants $-\Sigma \mathrm{BE}$ of products

$$
\begin{aligned}
=\left[\mathrm{BE}(\mathrm{~N} \equiv \mathrm{~N})+\frac{1}{2} \mathrm{BE}(\mathrm{O}=\mathrm{O})\right]-[& \mathrm{BE}(\mathrm{~N}=\mathrm{N}) \\
+ & \mathrm{BE}(\mathrm{~N}=\mathrm{O})]
\end{aligned}
$$

$=\left(946+\frac{1}{2} \times 498\right)-(418+607)$
$=170 \mathrm{~kJ}$ resonance energy
$=\Delta \mathrm{H}_{\mathrm{f}}^{\circ}($ observed $)-\Delta \mathrm{H}_{\mathrm{f}}^{\circ}($ calculated $)=82-$ 170

$$
=-88 \mathrm{~kJ}
$$

mol^{-1}
100. (3) No. of hybrid orbital formed $(X)=\frac{1}{2}$
[Valence electrons of central atom (VE) + No. of monovalent atoms/groups (MA)-charge on polyatomic cation (c) + charge on polyatomic anion

For $\mathrm{SF}_{2}, \mathrm{X}=\frac{1}{2}(6+2-0+0)=4$,
Hybridization $=\mathrm{sp}^{3}$
For $\mathrm{SF}_{4}, \mathrm{X}=\frac{1}{2}(6+4-0+0)=5$,
Hybridization $=\mathrm{sp}^{3} \mathrm{~d}$
For $\mathrm{SF}_{6}, \mathrm{X}=\frac{1}{2}(6+6-0+0)=6$,
Hybridization $=\mathrm{sp}^{3} \mathrm{~d}^{2}$

