





# **NEET 2023-24**

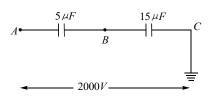
Mark 720 Group PCB

PRE FINAL ROUND -03

Date: 21/03/2024

Time: 3:20 Hours

# **Answer Key Version - S (PCB NEET 2023-24)**


| Physics |        |        |         |          | Chemistry         |        |        |        |        |
|---------|--------|--------|---------|----------|-------------------|--------|--------|--------|--------|
| Sec. A  | 11. 1  | 22. 2  | 33. 1   | 43. 2    | Sec. A            | 61. 2  | 72. 3  | 83. 4  | 93. 2  |
| 01. 3   | 12. 2  | 23. 1  | 34. 2   | 44. 1    | 51. 1             | 62. 1  | 73. 3  | 84. 4  | 94. 2  |
| 02. 2   | 13. 4  | 24. 1  | 35. 1   | 45. 4    | 52. 3             | 63. 1  | 74. 1  | 85. 3  | 95. 4  |
| 03. 1   | 14. 1  | 25. 2  | Sec. B  | 46. 2    | 53. 2             | 64. 1  | 75. 1  | Sec. B | 96. 4  |
| 04. 4   | 15. 1  | 26. 1  | 36. 4 S | i49e 499 | 9 54. 4           | 65. 3® | 76. 4  | 86. 3  | 97. 3  |
| 05. 4   | 16. 3  | 27. 1  | 37. 3   | 48. 3    | 55. 4             | 66. 3  | 77. 4  | 87. 4  | 98. 2  |
| 06. 3   | 17. 2  | 28. 2  | 38. 4   | 49. 3    | 56. 3             | 67. 2  | 78. 3  | 88. 4  | 99. 1  |
| 07. 4   | 18. 2  | 29. 3  | 39. 2   | 50. 4    | 57. 2<br>ISTITUTE | 68. 1  | 79. 4  | 89. 2  | 100. 2 |
| 08. 3   | 19. 3  | 30. 2  | 40. 1   |          | 58. 2             | 69. 4  | 80. 4  | 90. 2  |        |
| 09. 2   | 20. 1  | 31. 1  | 41. 1   |          | 59. 2             | 70. 3  | 81. 2  | 91. 4  |        |
| 10. 2   | 21. 4  | 32. 1  | 42. 1   |          | 60. 4             | 71. 4  | 82. 3  | 92. 4  |        |
| Biology |        |        |         |          |                   |        |        |        |        |
| Part-I  | 110. 3 | 121. 4 | 132. 2  | 142. 2   | Part-II           | 160. 4 | 171. 4 | 182. 4 | 192. 4 |
| Sec.A   | 111. 4 | 122. 2 | 133. 2  | 143. 3   | Sec.A             | 161. 3 | 172. 3 | 183. 2 | 193. 1 |
| 101. 1  | 112. 4 | 123. 3 | 134. 1  | 144. 1   | 151. 4            | 162. 2 | 173. 2 | 184. 4 | 194. 4 |
| 102. 1  | 113. 2 | 124. 1 | 135. 1  | 145. 3   | 152. 2            | 163. 1 | 174. 4 | 185. 4 | 195. 4 |
| 103. 3  | 114. 4 | 125. 4 | Sec.B   | 146. 3   | 153. 2            | 164. 1 | 175. 3 | Sec. B | 196. 3 |
| 104. 2  | 115. 2 | 126. 3 | 136. 1  | 147. 4   | 154. 3            | 165. 3 | 176. 2 | 186. 2 | 197. 2 |
| 105. 2  | 116. 2 | 127. 4 | 137. 2  | 148. 4   | 155. 4            | 166. 4 | 177. 4 | 187. 3 | 198. 1 |
| 106. 1  | 117. 1 | 128. 1 | 138. 4  | 149. 3   | 156. 4            | 167. 1 | 178. 2 | 188. 3 | 199. 3 |
| 107. 2  | 118. 3 | 129. 3 | 139. 2  | 150. 2   | 157. 3            | 168. 4 | 179. 1 | 189. 4 | 200. 3 |
| 108. 3  | 119. 4 | 130. 4 | 140. 3  |          | 158. 2            | 169. 2 | 180. 1 | 190. 3 |        |
| 109. 2  | 120. 3 | 131. 3 | 141. 2  |          | 159. 4            | 170. 3 | 181. 2 | 191. 3 |        |

# BO MHI 2015 Careful

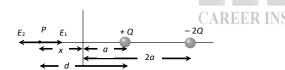
### **PHYSICS**

#### **SECTION - A (35 Questions)**

01. (3) The given circuit can be redrawn as follows



$$(V_A - V_B) = \left(\frac{15}{5 + 15}\right) \times 2000 \Rightarrow V_A - V_B = 1500V$$


$$\Rightarrow 2000 - V_B = 1500V \Rightarrow V_B = 500V.$$

02. **(2)** Suppose electric field is zero at a point P lies at a distance d from the charge +Q

At 
$$P$$
  $\frac{kQ}{d^2} = \frac{k(2Q)}{(a+d)^2}$ 

Since 1999

$$\Rightarrow \frac{1}{d^2} = \frac{2}{(a+d)^2} \Rightarrow d = \frac{a}{\sqrt{2}-1}$$



Since d > a i.e. point P must lies on negative x-axis as shown at a distance from origin hence

$$x = d - a = \frac{a}{\sqrt{2} - 1} - a = \sqrt{2}a.$$

Actually *P* lies on negative x-axis so  $x = -\sqrt{2}a$ .

03. (1) The total energy before connection

$$= \frac{1}{2} \times 4 \times 10^{-6} \times (50)^2 + \frac{1}{2} \times 2 \times 10^{-6} \times (100)^2$$

$$= 1.5 \times 10^{-2}$$

When connected in parallel

$$4 \times 50 + 2 \times 100 = 6 \times V \Rightarrow V = \frac{200}{3}$$

Total energy after connection

$$= \frac{1}{2} \times 6 \times 10^{-6} \times \left(\frac{200}{3}\right)^2 = 1.33 \times 10^{-2} J.$$

04. **(4)** Momentum  $p = \sqrt{2mK}$ ; where K = kinetic energy = Q. V

$$\Rightarrow p = \sqrt{2mQV} \Rightarrow p \propto \sqrt{mQ}$$

$$\Rightarrow \frac{p_e}{p_\alpha} = \sqrt{\frac{m_e Q_e}{m_\alpha Q_\alpha}} = \sqrt{\frac{m_e}{2m_\alpha}}.$$

100 μC A 50 cm

40 cm 50 cm

Work done in displacing charge of  $5\mu$ C from B to C is W =  $^{\circ}5 \times 10^{-6} (V_C - V_B)$  where

$$V_B = 9 \times 10^9 \times \frac{100 \times 10^{-6}}{0.4} = \frac{9}{4} \times 10^6 V$$

AREER INSTITUTE and 
$$V_C = 9 \times 10^9 \times \frac{100 \times 10^{-6}}{0.5} = \frac{9}{5} \times 10^6 V$$

so 
$$W = 5 \times 10^{-6} \times \left(\frac{9}{5} \times 10^6 - \frac{9}{4} \times 10^6\right) = -\frac{9}{4}V.$$

06 (3) Common potential

$$V = \frac{C_1 V_1}{C_1 + C_2} = \frac{10^{-2}}{16 \times 10^{-6}} = 625V.$$

07. (4)

08. (3)

When the switch is open,  $3 \mu F$  and  $6 \mu F$  capacitors are in series. Hence charge on each capacitor

$$q = C_{eq}V = \frac{3 \times 6}{3 + 6} \times 9 = 18\mu C$$

When the switch is closed, in the steady state no current will flow through the capacitor. Therefore the two resistors  $3\Omega$  and  $6\Omega$  will be in series.

Current in each resistor will be  $I = \frac{9}{3+6} = 1 A$ 



Now the  $3\mu F$  capacitor and  $6\mu F$  capacitor will be in parallel with and resistor respectively

Charge on  $3\mu F$  capacitor  $q_1 = CV = 3 \times 3 = 9\mu C$ 

Charge on  $6\mu F$   $q_2 = CV = 6 \times 6 = 36\mu C$ 

Charge flowing through the switch = increase in charge on the system consisting of right plate of  $3\mu\text{F}$  and left plate of  $6\mu\text{F} = (-9 + 36) = 27 \,\mu\text{C}$ .

- 09. **(2)**  $\phi = \frac{1}{\varepsilon_0} \times Q_{enc} = \frac{1}{\varepsilon_0} (2q).$
- 10. (2) Charge on smaller sphere

= Total charge 
$$\left(\frac{r_1}{r_1 + r_2}\right) = 30 \left(\frac{5}{5 + 10}\right) = 10 \mu C$$

- 11. (1)
- 12. **(2)**While drawing the dielectric plate outside, the capacitance decreases till the entire plate comes out and then becomes constant. So, *V* increases and then becomes constant

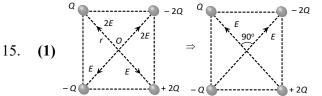
13. **(4)** 
$$C_{air} = \frac{C_{medium}}{K} = \frac{C}{2}$$
.

14. **(1)** Magnetic field due to  $i_1 = \frac{\mu_0 i_1}{2R} \frac{\theta_1}{2\pi}$  (Into the plane)

Magnetic field due to  $i_2 = \frac{\mu_0 i_2}{2R} \frac{\theta_2}{2\pi}$  (Out of the plane)

For parallel combination

Now, 
$$\frac{i_1}{i_2} = \frac{\rho i_2}{A} \times \frac{A}{\rho i_1} = \frac{l_2}{l_1}$$


$$\Rightarrow \frac{i_1}{i_2} = \frac{\frac{1}{4}(2\pi R)}{\frac{3}{4}(2\pi R)} = \frac{1}{3} \Rightarrow i_1 = \frac{i_2}{3} \Rightarrow i_2 = 3i_1.$$

... Now magnetic field,

$$=\frac{\mu_0 i_1}{2R} \left(\frac{\theta_1}{2\pi}\right) - \frac{\mu_0 i_2}{2R} \left(\frac{\theta_2}{2\pi}\right)$$

$$=\frac{\mu_0 i_1}{2R} \left(\frac{3\pi}{2 \times 2\pi}\right) - \frac{\mu_0 i_2}{2R} \left(\frac{\pi}{2 \times 2\pi}\right)$$

$$=\frac{\mu_0 i_1}{2R} \left( \frac{3i_1}{4} - \frac{i_2}{4} \right) = \frac{\mu_0}{2R} \left( \frac{3i_1}{4} - \frac{3i_1}{4} \right) = 0.$$

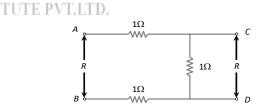


Side 
$$a = 5 \times 10^{-2} \,\text{m}$$

Half of the diagonal of the square  $r = \frac{a}{\sqrt{2}}$ 

Electric field at centre due to charge

$$QE = \frac{kQ}{\left(a/\sqrt{2}\right)^2}$$


Now field at

$$O = \sqrt{E^2 + E^2} = E\sqrt{2} = \frac{kq}{(a/\sqrt{2})^2}.\sqrt{2}$$

$$= \frac{9 \times 10^9 \times 10^{-6} \times \sqrt{2} \times 2}{(5 \times 10^{-2})^2} = 1.02 \times 10^7 \,\text{N/C}$$

[upward]

16. **(3)** Let equivalent resistance between *A* and *B* be *R*, then equivalent resistance between *C* and *D* will also be *R* 



$$R' = \frac{R}{R+1} + 2 = R$$

$$\Rightarrow R^2 - 2R - 2 = 0$$

$$\therefore R = \frac{2 \pm \sqrt{4+8}}{2} = \sqrt{3} + 1.$$

17. **(2)** Let l be the length of the wire. Magnetic field at the centre of the loop is

$$B = \frac{\mu_0 I}{2R}$$
 :  $B = \frac{\mu_0 \pi I}{l}$  (:  $l = 2\pi R$ ) ......(i)

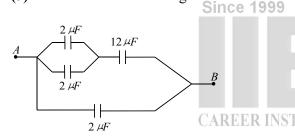
$$B' = \frac{\mu_0 nI}{2r} = \frac{\mu_0 \pi I}{2(l/2n\pi)} \text{ or } , B' = \frac{\mu_0 n^2 \pi I}{l}$$
.....(ii)

From eqns. (i) and (ii), we get  $B' = n^2 B$ .



18. **(2)** The formula of drift velocity is  $v_d = \frac{eE}{m} \tau$ 

Current density  $J = \frac{I}{A} = \frac{neAv_d}{A} = nev_d$ 


Resistivity is 
$$\rho = \frac{m}{ne^2 \tau} \Rightarrow gt = \frac{m}{ne^2 \rho}$$

Resistance is  $R = \frac{V}{I}$ 

$$\rho \frac{l}{A} = \frac{El}{I} \Rightarrow \rho = \frac{EA}{I} = \frac{E}{J}.$$

where, E = electric field, A = area of cross section e = electronic charge, n = number of density of electrons,  $\tau =$  relaxation time.

19. **(3)** The circuit can be rearranged as



Net capacitance between

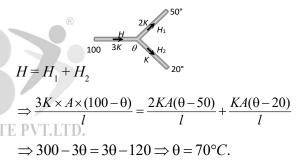
$$AB = \frac{4 \times 12}{4 + 12} + 2 = 5\mu F.$$

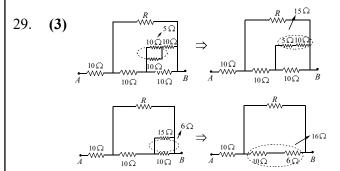
- 20. (1)
- 21. **(4)** In stretching of wire  $R \propto \frac{1}{d^4}$ , where d = Diameter of wire.
- 22. (2) In parallel combination equivalent conductivity

$$K = \frac{K_1 A_1 + K_2 A_2}{A_1 + A_2} = \frac{K_1 + K_2}{2} \text{ [As } A_1 = A_2]$$

- 23. (1) At point A the slope of the graph will be negative. Hence resistance is negative.
- 24. (1)Internal resistance  $\propto \frac{1}{\text{Temperature}}$ .
- 25. **(2)** Resistance across  $XY = \frac{2}{3}\Omega$

Total resistance = 
$$2 + \frac{2}{3} = \frac{8}{3}\Omega$$


Current through ammeter  $=\frac{2}{8/3} = \frac{6}{8} = \frac{3}{4} A$ .


26. (1) For maximum energy, we have

External resistance of the circuit = Equivalent internal resistance of the circuit

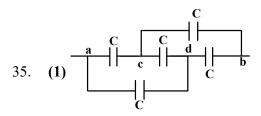
i.e. 
$$R = r/2$$
.

- 27. (1) Magnetic moment M = niA
- 28. (2) Let the temperature of junction be  $\theta$  then according to the following figure.





$$\therefore \frac{R \times 16}{R + 16} + 10 = 18, \text{ on solving we get, } R = 16\Omega.$$


- 30. (2)
- 31. (1) According to Wien's displacement law

$$\lambda_m \propto \frac{1}{T} \Longrightarrow \lambda_{m_2} < \lambda_{m_1} \ [\because T_1 < T_2]$$

There fore  $I - \lambda$  graph for  $T_2$  has lesser wavelength  $(\lambda_m)$  and so curve for  $T_2$  will shift towards left side.

$$F = QE = \frac{QV}{d} \Rightarrow 5000 = \frac{5 \times V}{10^{-2}} \Rightarrow V = 10 \text{volt}.$$

- 33. (1) Electric field inside shell is zero
- 34. **(2)** The two capacitors are in parallel so  $C = \frac{\varepsilon_0 A}{t \times 2} \cdot (k_1 + k_2).$



$$C_{eq} = c = \frac{A\varepsilon_0}{d}$$

#### **SECTION - B (Attempt Any 10 Questions)**

36. **(4)** 
$$(Q)_{Balck\ body} = A\sigma T^4 t \Rightarrow Q \propto T^4 \text{ ce } 1999$$
  
$$\Rightarrow Q_2 = Q_1 \left(\frac{T_2}{T_1}\right)^4 = 10 \left(\frac{273 + 327}{273 + 27}\right)^4 = 10 \left(\frac{600}{300}\right)^4 = 160J.$$

37. (3) Total energy radiated from a body  $Q = A\varepsilon\sigma T^4 t$ 

$$\Rightarrow Q \propto AT^4 \propto r^2T^4 \ (\therefore A = 4\pi r^2)$$

$$\Rightarrow \frac{Q_P}{Q_Q} = \left(\frac{r_P}{r_Q}\right)^2 \left(\frac{T_P}{T_Q}\right)^4$$

$$\Rightarrow \frac{Q_P}{Q_O} = \left(\frac{8}{2}\right)^2 \left(\frac{273 + 127}{273 + 527}\right)^4 = 1.$$

38. **(4)**As resistance of a bulb  $R = \frac{v^2}{P}$ ,

Hence 
$$R_1: R_2: R_3 = \frac{1}{100}: \frac{1}{60}: \frac{1}{60}$$

Now the combined potential difference across  $B_1$  and  $B_2$  is same as the potential difference across  $B_3$ . Hence,  $W_3$  is more than  $W_1$  and  $W_2$ , being in series, carry same current and  $R_1 < R_2$ , therefore  $W_1 < W_2$ ,

$$\therefore W_1 < W_2 < W_3.$$

39. **(2)** 
$$\rho$$
 – same,  $l$  – same,  $A_2 = \frac{1}{4} A_1 \left( as \ r_2 = \frac{r_1}{2} \right)$ 

Byusing

S

$$R = \rho \frac{l}{A} \Rightarrow \frac{R_1}{R_2} = \frac{A_2}{A_1} \Rightarrow \frac{R_1}{8} = \frac{1}{4} \Rightarrow R_1 = 2\Omega.$$

Hence, 
$$R_{eq} = \frac{R_1 R_2}{R_1 + R_2} = \frac{2+8}{2+8} = \frac{8}{5}\Omega$$
.

40. **(1)** In parallel, 
$$\frac{H_1}{H_2} = \frac{p_1 t}{p_2 t} = \frac{P_1}{P_2} = \frac{500}{200} = \frac{5}{2}$$

In series, 
$$\frac{H_1}{H_2} = \frac{I^2 R_1 t}{I^2 R_2 t} = \frac{R_1}{R_2} = \frac{V^2 / P_1}{V^2 / P_2}$$

$$=\frac{P_1}{P_2}=\frac{200}{500}=\frac{2}{5}.$$

41. (1) The potential difference across  $300\Omega = 60 - 30 = 30V$ 

TUTE PVT.ITD Therefore the effective resistance of voltmeter resistance R and  $400\Omega$  in parallel will be equal to  $300\Omega$ , as 60 V is equally divided between two parts.

So 
$$300 = \frac{R \times 400}{R + 400}$$

or 
$$300R + 120000 = 400R$$
 or  $R = 1200 \Omega$ 

42. **(1)** Work done

$$W = Q(V_B - V_A) \Rightarrow (V_B - V_A) = \frac{W}{Q}$$

$$= \frac{10 \times 10^{-3}}{5 \times 10^{-6}} \text{ J/C} = 2kV.$$

43. **(2)** According to the figure, there is no other charge. A single charge when moved in a space of no field, does not experience any force. No work is done

$$W_{A} = W_{B} = W_{C} = 0.$$



44. (1) 
$$\tan \theta = \frac{kq^2}{\frac{x^2}{mg}} \Rightarrow \sin \theta = \frac{kq^2}{x^2 mg}$$

$$\frac{x}{2L} = \frac{kq^2}{x^2 mg} \implies x^3 = \frac{kq^2 2L}{mg}$$

$$x = \left\lceil \frac{q^2 L}{2\pi \varepsilon_0 mg} \right\rceil^{1/3}$$

45. **(4)** 12  $\mu F$  and 6  $\mu F$  are in series and again are in parallel with 4  $\mu F$ . Therefore, resultant of these

three will be 
$$=\frac{12\times6}{12+6}+4=4+4=8\mu F$$

This equivalent system is in series with 1  $\mu F$ 

Its equivalent capacitance = 
$$\frac{8 \times 1}{8+1} = \frac{8}{9} \mu F$$
 .....(i)  
Since 1999

Equivalent of  $8\mu F$ ,  $2\mu F$  and  $2\mu F$ 

$$= \frac{4 \times 8}{4 + 8} = \frac{32}{12} = \frac{8}{3} \mu F \dots (ii)$$

(i) and (ii) are in parallel and are in series with  $C_{\rm IS}$ 

$$\therefore \frac{8}{9} + \frac{8}{3} = \frac{32}{12}$$
 and

$$C_{eq} = 1 = \frac{\frac{32}{9} \times C}{\frac{32}{9} + C} \Rightarrow C = \frac{32}{23} \mu F.$$

46. **(2)** The current flowing in the ring is I = qf......(i)

The magnetic induction at the centre of the ring is

$$B = \frac{\mu_0 I}{2R} = \frac{\mu_0 q f}{2R}$$
 (Using (i)).

47. **(4)** Magnetic field due to the solid cylindrical conductor of radius R,

(i) For 
$$d < R$$
,  $I' = \frac{Id^2}{R^2}$ 

$$\int \vec{B}.\vec{dl} = \mu_0 I' \Rightarrow B(2\pi d) = \frac{\mu_0 I d^2}{R^2} \Rightarrow B = \frac{\mu_0 I d}{2\pi R^2}$$

$$\therefore B \propto d$$

(ii) For 
$$d = R$$
,  $B = \frac{\mu_0 I}{2\pi R}$  (maximum)

(iii) For 
$$d = R$$
,  $B = \frac{\mu_0 I}{2\pi d} \Rightarrow B \propto \frac{1}{d}$ .

48. **(3)** Force on arm *AB* due to current in conductor *XY* is

$$F_1 = \frac{\mu_0}{4\pi} \frac{2IiL}{L/2} = \frac{\mu_0 Ii}{\pi}$$

acting towards XY in the plane of loop.

Force on arm CD due to current in conductor XY is

$$F_2 = \frac{\mu_0}{4\pi} \frac{2IiL}{3(L/2)} = \frac{\mu_0 Ii}{3\pi}$$

acting away from XY in the plane of loop.

 $\therefore$  Net force on the loop =  $F_1 - F_2$ 

$$= \frac{\mu_0 Ii}{\pi} \left( 1 - \frac{1}{3} \right) = \frac{2}{3} \frac{\mu_0 Ii}{\pi}.$$

TUTE PVT.LTD. 49. **(3)**  $B = \frac{\mu_0}{4\pi} \frac{2i_2}{(r/2)} - \frac{\mu_0}{4\pi} \frac{2i_1}{(r/2)} = \frac{\mu_0}{4\pi} \frac{4}{r} (i_2 - i_1)$ 

$$B = \frac{\mu_0}{4\pi} \frac{4}{5} (2.5 - 5.0) = -\frac{\mu_0}{2\pi}.$$

Negative sing shows that B is acting inwards i.e., into the plane.

50. **(4)**  $m = l \times area \times density$ 

$$Area \propto \frac{m}{l}$$

$$R \propto \frac{l}{Area} \propto \frac{l^2}{m}$$

$$R_1: R_2: R_3 = \frac{l_1^2}{m_1}: \frac{l_2^2}{m_2}: \frac{l_3^2}{m_3}$$

$$R_1: R_2: R_3 = \frac{25}{1}: \frac{9}{3}: \frac{1}{5} = 125: 25: 1.$$

## IIB\*

### **CHEMISTRY**

### **SECTION - A (35 Questions)**

51. (1)

Due to C-Cl partial double bond character.

- 52. **(3**)
  - (1)-(iii), (2)-(i), (3)-(iv), (4)-(ii)
- 53. (2)

As concentration  $\alpha$  B.P.  $\alpha \frac{1}{VP}$ 

So the correct order of Conc<sup>n</sup>. as 3 > 2 > 1.

**54. (4)** 

Wurtz-Fittig reaction

55. (4)

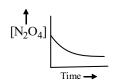
Enantiomers have different melting point

56. **(3**)

There will be no movement of KCl or BaCl,

57. **(2**)

 $\frac{i-1}{n-1}$ 


- 58. (2)
  - (c) only CAREER INST
- **59. (2)**

If both Assertion & Reason are true but the Reason is not the correct explanation of the Assertion, then mark (2).

**60. (4)** 

The azeotropic mixture cannot be separated into individual components as both the components boil at the same temperature.

**61. (2)** 



62. **(1)** 

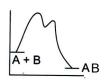
If both Assertion & Reason are true and the Reason is the correct explanation of the Assertion, then mark (1).

63. (1)

If both Assertion & Reason are true and the Reason is the correct explanation of the Assertion, then mark (1).

64. (1)

t<sub>1/2</sub>


65. **(3)** 



66. **(3)** 

(a)-(ii), (b)-(iii), (c)-(iv), (d)-(i)

**67. (2)** 



**68. (1)** 



**69. (4)** 

The stoichiometric coefficients of reaction has no relation to the order of reaction.

70. **(3)** 

(1)-(i), (2)-(iv), (3)-(iii), (4)-(ii)

71. (4)

Since N is more electronegative, it will pull the electron of hydrogen towards itself H being having +1 oxidations state so N will have (-1/3) O.S.

72. **(3)** 

Statement-I is correct and Statement-II is incorrect

73. **(3)** 

$$\begin{array}{c}
OH & CH_3 \\
& H_2O
\end{array}$$

$$\begin{array}{c}
(3^{\circ}-OH)
\end{array}$$

*74.* **(1)** 

 $\begin{array}{c|c}
 & & & \\
\hline
O_1 & & & \\
\hline
AlCl_3 & & & \\
\hline
(A) & & & \\
\hline
(B) & & & \\
\hline
(B) & & & \\
\hline
(C) & & \\
\end{array}$ 

75. (1)

(1)-(iii), (2)-(v), (3)-(i), (4)-(ii)



76. **(4)** 

 $\frac{M}{11}$  [because Fe is going from +2 to +3 and sulphur from -1 to +4].

77. **(4)** 

Rate of reactivity of alcohol  $3^{\circ} > 2^{\circ} > 1^{\circ}$ .

78. **(3)** 

$$\begin{array}{c}
OH \\
\hline
O-CH_3 \\
\hline
CH_3COOH
\end{array}$$

$$\begin{array}{c}
OCH_3 \\
\hline
CH_3COOH
\end{array}$$

$$\begin{array}{c}
OCH_3 \\
\hline
OCH_3
\end{array}$$

79. **(4)** 

Bromine is both reduced and oxidized

80. (4)

+6

**Since 1999** 

CAREER INST

81. (2)

82. **(3)** 

$$SN^2$$
Reactivity  $\propto \frac{1}{\text{steric hindrance}}$ 

83. **(4)** 

The vapour pressure of 0.45 molar urea solution is equal to that of 0.45 molar solution of sugar.

84. **(4)** 

The freezing point of 0.1 M urea is greater than that of 0.1 M KCl solution.

85. **(3)** 

(a), (b) and (c)

#### **SECTION - B (Attempt Any 10 Questions)**

86. **(3**)

Molecularity of slowest step is order of overall complex reaction.

87. **(4)** 

$$x = 6$$
,  $y = 10$ ,  $z = 22$ 

88. (4)

(i), (ii), (iv)

89. **(2)** 

90. (2)

$$C_{2}H_{5}OH \xrightarrow{Na} C_{2}H_{5}OHNa^{+}$$

$$CH_{3} CH_{2}$$

$$CH_{3}-C-Cl \longrightarrow CH_{3}-C$$

$$CH_{3} CH_{2}$$

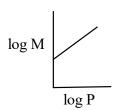
$$CH_{3} CH_{3}$$

91. **(4)** 

-1 and +1

92. **(4)** 

Statement-I is incorrect and Statement-II is correct


93. **(2)** 

p-nitro phenol is less acidic than o-nitro phenol

94. (2)

$$TUT_{Ph}\text{-}CH_{2}\text{-}Br + Mg \xrightarrow{dry} PhCH_{2}MgBr \xrightarrow{CH_{3}OH} PhCH_{3}$$

95. (4)



96. (4)

As there is no movement of ions.

97. (3)

y

98. **(2)** 

+R and +I group ↑ es e- density on benzne ring stability of benzylic carbon ↑ es

 $SN^1$  reactivity  $\infty$  stability of carbocation.

99. (1)

Zero-order w.r.t. A

100. **(2)** 

 $\Delta E$  for the forward reaction is B-A