CAREER INSTITUTE PVT.LTD. NEET 2023-24
 Answer Key Version - R (PCB NEET 2023-24)

Physics					Chemistry				
Sec. A	11. 3	22. 2	33. 2	43. 4	Sec. A	61. 3	72. 2	83. 3	93. 4
01. 1	12. 4	23. 2	34. 3	44. 2	51. 2	62. 2	73. 1	84. 4	94. 2
02. 1	13. 3	24. 3	35. 2	45. 1	52. 3	63. 2	74. 4	85. 4	95. 2
03. 1	14. 2	25. 1	Sec. B	46. 1	53. 4	64. 2	75. 3	Sec. B	96. 4
04. 2	15. 2	26. 4	36. 2	i47. 1^{99}	54. 4	65. $4^{\text {® }}$	76. 4	86. 4	97. 4
05. 1	16. 1	27. 2	37. 4	48. 2	55. 3	66. 2	77. 3	87. 3	98. 2
06. 3	17. 2	28. 1	38. 3	49. 1	56. 1	67. 1	78. 3	88. 2	99. 2
07. 2	18. 4	29. 1	39. 3	$\begin{array}{\|cc\|} 50 . & 4 \\ \triangle R E E R \\ \hline \end{array}$	57.3	$68 . \quad 1$	79. 1	89. 1	100. 4
08. 1	19. 1	30.2	40. 4		58. 2	69. 1	80. 1	90. 2	
09. 4	20. 1	31. 1	41. 4		59. 4	70. 3	81. 4	91. 3	
10. 4	21. 3	32. 1	42. 3		60. 4	71. 3	82. 4	92. 4	
Biology									
Part-I	110. 2	121. 2	132. 4	142. 2	Part-II	160. 4	171. 4	182. 4	192. 3
	111. 1	122. 1	133. 1	143. 4	Sec.A	161. 4	172. 1	183. 2	193. 3
101. 3	112. 2	123. 3	134. 3	144. 2	151. 2	162. 3	173. 4	184. 1	194. 4
102. 2	113. 3	124. 4	135. 4	145. 3	152. 4	163. 2	174. 2	185. 1	195. 3
103. 2	114. 2	125. 3	Sec.B	146. 2	153. 2	164. 4	175. 3	Sec. B	196. 3
104. 1	115. 3	126. 4	136. 3	147. 2	154. 4	165. 4	176. 4	186. 3	197. 4
105. 1	116. 4	127. 2	137. 4	148. 3	155. 4	166. 3	177. 3	187. 2	198. 1
106. 1	117. 4	128. 3	138. 4	149. 1	156. 4	167. 2	178. 2	188. 1	199. 4
107. 1	118. 2	129. 1	139. 3	150. 3	157. 2	168. 1	179. 4	189. 3	200. 4
108. 3	119. 4	130. 4	140. 2		158. 2	169. 1	180. 3	190. 3	
109. 2	120. 2	131. 3	141. 1		159. 3	170. 3	181. 2	191. 2	

PHYSICS

SECTION - A (35 Questions)

1. (1) According to Wien's displacement law

$$
\lambda_{m} \propto \frac{1}{T} \Rightarrow \lambda_{m_{2}}<\lambda_{m_{1}}\left[\because T_{1}<T_{2}\right]
$$

There fore $I-\lambda$ graph for T_{2} has lesser wavelength $\left(\lambda_{m}\right)$ and so curve for T_{2} will shift towards left side.
02. (1)

$$
F=Q E=\frac{Q V}{d} \Rightarrow 5000=\frac{5 \times V}{10^{-2}} \Rightarrow V=10 \mathrm{volt} .
$$

3. (1) Electric field inside shell is zero
4. (2) The two capacitors are in parallel so

$$
C=\frac{\varepsilon_{0} A}{t \times 2} .\left(k_{1}+k_{2}\right) .
$$

5. (1)

$$
C_{e q}=c=\frac{A \varepsilon_{0}}{d}
$$

6. (3) The given circuit can be redrawn as follows

$$
\begin{aligned}
& \left(V_{A}-V_{B}\right)=\left(\frac{15}{5+15}\right) \times 2000 \Rightarrow V_{A}-V_{B}=1500 \mathrm{~V} \\
& \quad \Rightarrow 2000-V_{B}=1500 \mathrm{~V} \Rightarrow V_{B}=500 \mathrm{~V}
\end{aligned}
$$

7. (2) Suppose electric field is zero at a point P lies at a distance d from the charge $+Q$

At $P \quad \frac{k Q}{d^{2}}=\frac{k(2 Q)}{(a+d)^{2}}$
$\Rightarrow \frac{1}{d^{2}}=\frac{2}{(a+d)^{2}} \Rightarrow d=\frac{a}{\sqrt{2}-1}$

Since $d>a$ i.e. point P must lies on negative x axis as shown at a distance from origin hence $x=d-a=\frac{a}{\sqrt{2}-1}-a=\sqrt{2} a$.

Actually P lies on negative x -axis so $x=-\sqrt{2} a$.
08. (1) The total energy before connection
$=\frac{1}{2} \times 4 \times 10^{-6} \times(50)^{2}+\frac{1}{2} \times 2 \times 10^{-6} \times(100)^{2}$
$=1.5 \times 10^{-2} \mathrm{~J}$
When connected in parallel
$4 \times 50+2 \times 100=6 \times V \Rightarrow V=\frac{200}{3}$
Total energy after connection
$=\frac{1}{2} \times 6 \times 10^{-6} \times\left(\frac{200}{3}\right)^{2}=1.33 \times 10^{-2} J$.
09. (4) Momentum $p=\sqrt{2 m K}$; where $K=$ kinetic energy $=Q . V$
$\Rightarrow p=\sqrt{2 m Q V} \Rightarrow p \propto \sqrt{m Q}$
$\Rightarrow \frac{p_{e}}{p_{\alpha}}=\sqrt{\frac{m_{e} Q_{e}}{m_{\alpha} Q_{\alpha}}}=\sqrt{\frac{m_{e}}{2 m_{\alpha}}}$.
10. (4)

Work done in displacing charge of $5 \mu \mathrm{C}$ from B to C is $\mathrm{W}=5 \times 10^{-6}\left(V_{C}-V_{B}\right)$ where
$V_{B}=9 \times 10^{9} \times \frac{100 \times 10^{-6}}{0.4}=\frac{9}{4} \times 10^{6} \mathrm{~V}$
and $V_{C}=9 \times 10^{9} \times \frac{100 \times 10^{-6}}{0.5}=\frac{9}{5} \times 10^{6} \mathrm{~V}$
so $W=5 \times 10^{-6} \times\left(\frac{9}{5} \times 10^{6}-\frac{9}{4} \times 10^{6}\right)=-\frac{9}{4} V$.
11 (3) Common potential

$$
V=\frac{C_{1} V_{1}}{C_{1}+C_{2}}=\frac{10^{-2}}{16 \times 10^{-6}}=625 \mathrm{~V} .
$$

12. (4)
13. (3) When the switch is open, $3 \mu \mathrm{~F}$ and $6 \mu \mathrm{~F}$ capacitors are in series. Hence charge on each capacitor $q=C_{e q} V=\frac{3 \times 6}{3+6} \times 9=18 \mu C$

When the switch is closed, in the steady state no current will flow through the capacitor. Therefore the two resistors 3Ω and 6Ω will be in series.
Current in each resistor will be $I=\frac{9}{3+6}=1 \mathrm{~A}$
Now the $3 \mu \mathrm{~F}$ capacitor and $6 \mu \mathrm{~F}$ capacitor will be in parallel with and resistor respectively

Charge on $3 \mu \mathrm{~F}$ capacitor $q_{1}=C V=3 \times 3=9 \mu C$
Charge on $6 \mu \mathrm{~F} \quad q_{2}=C V=6 \times 6=36 \mu C$
Charge flowing through the switch $=$ increase in charge on the system consisting of right plate of $3 \mu \mathrm{~F}$ and left plate of $6 \mu \mathrm{~F}=(-9+36)=27 \mu \mathrm{C}$.
14. (2) $\phi=\frac{1}{\varepsilon_{0}} \times Q_{e n c}=\frac{1}{\varepsilon_{0}}(2 q)$.
15. (2) Charge on smaller sphere
$=$ Total charge $\left(\frac{r_{1}}{r_{1}+r_{2}}\right)=30\left(\frac{5}{5+10}\right)=10 \mu \mathrm{C}$
16. (1)
17. (2) While drawing the dielectric plate outside, the capacitance decreases till the entire plate comes out and then becomes constant. So, V increases and then becomes constant
18. (4) $C_{\text {air }}=\frac{C_{\text {medium }}}{K}=\frac{C}{2}$.
19. (1) Magnetic field due to $i_{1}=\frac{\mu_{0} i_{1}}{2 R} \frac{\theta_{1}}{2 \pi}$ (Into the plane)

Magnetic field due to $i_{2}=\frac{\mu_{0} i_{2}}{2 R} \frac{\theta_{2}}{2 \pi}$ (Out of the plane)

For parallel combination
Now, $\frac{i_{1}}{i_{2}}=\frac{\rho i_{2}}{A} \times \frac{A}{\rho i_{1}}=\frac{l_{2}}{l_{1}}$
$\Rightarrow \frac{i_{1}}{i_{2}}=\frac{\frac{1}{4}(2 \pi R)}{\frac{3}{4}(2 \pi R)}=\frac{1}{3} \Rightarrow i_{1}=\frac{i_{2}}{3} \Rightarrow i_{2}=3 i_{1}$.
\therefore Now magnetic field,
$=\frac{\mu_{0} i_{1}}{2 R}\left(\frac{\theta_{1}}{2 \pi}\right)-\frac{\mu_{0} i_{2}}{2 R}\left(\frac{\theta_{2}}{2 \pi}\right)$
$=\frac{\mu_{0} i_{1}}{2 R}\left(\frac{3 \pi}{2 \times 2 \pi}\right)-\frac{\mu_{0} i_{2}}{2 R}\left(\frac{\pi}{2 \times 2 \pi}\right)$
$=\frac{\mu_{0} i_{1}}{2 R}\left(\frac{3 i_{1}}{4}-\frac{i_{2}}{4}\right)=\frac{\mu_{0}}{2 R}\left(\frac{3 i_{1}}{4}-\frac{3 i_{1}}{4}\right)=0$.
20.

Side $a=5 \times 10^{-2} \mathrm{~m}$
Half of the diagonal of the square $r=\frac{a}{\sqrt{2}}$
Electric field at centre due to charge
$Q E=\frac{k Q}{(a / \sqrt{2})^{2}}$
Now field at
$O=\sqrt{E^{2}+E^{2}}=E \sqrt{2}=\frac{k q}{(a / \sqrt{2})^{2}} \cdot \sqrt{2}$
$=\frac{9 \times 10^{9} \times 10^{-6} \times \sqrt{2} \times 2}{\left(5 \times 10^{-2}\right)^{2}}=1.02 \times 10^{7} \mathrm{~N} / \mathrm{C}$
[upward]
21. (3) Let equivalent resistance between A and B be R, then equivalent resistance between C and D will also be R

$R^{\prime}=\frac{R}{R+1}+2=R$
$\Rightarrow R^{2}-2 R-2=0$
$\therefore R=\frac{2 \pm \sqrt{4+8}}{2}=\sqrt{3}+1$.
22. (2) Let l be the length of the wire. Magnetic field at the centre of the loop is
$B=\frac{\mu_{0} I}{2 R} \quad \therefore B=\frac{\mu_{0} \pi I}{l}(\because l=2 \pi R)$
$B^{\prime}=\frac{\mu_{0} n I}{2 r}=\frac{\mu_{0} \pi I}{2(l / 2 n \pi)}$ or, $B^{\prime}=\frac{\mu_{0} n^{2} \pi I}{l} 1999$

From eqns. (i) and (ii), we get $B^{\prime}=n^{2} B$.
23. (2) The formula of drift velocity is $v_{d}=\frac{e E}{m} \tau N S$

Current density $J=\frac{I}{A}=\frac{n e A v_{d}}{A}=n e v_{d}$
Resistivity is $\rho=\frac{m}{n e^{2} \tau} \Rightarrow g t=\frac{m}{n e^{2} \rho}$

Resistance is $R=\frac{V}{I}$
$\rho \frac{l}{A}=\frac{E l}{I} \Rightarrow \rho=\frac{E A}{I}=\frac{E}{J}$.
where, $E=$ electric field, $A=$ area of cross section $e=$ electronic charge, $n=$ number of density of electrons, $\tau=$ relaxation time.
24. (3) The circuit can be rearranged as

Net capacitance between
$A B=\frac{4 \times 12}{4+12}+2=5 \mu F$.
25. (1)
26. (4) In stretching of wire $R \propto \frac{1}{d^{4}}$, where $d=$ Diameter of wire.
27. (2) In parallel combination equivalent conductivity
$K=\frac{K_{1} A_{1}+K_{2} A_{2}}{A_{1}+A_{2}}=\frac{K_{1}+K_{2}}{2}\left[\right.$ As $\left.A_{1}=A_{2}\right]$
28. (1) At point A the slope of the graph will be negative. Hence resistance is negative.
29. (1)Internal resistance $\propto \frac{1}{\text { Temperature }}$.
30. (2) Resistance across $X Y=\frac{2}{3} \Omega$

Total resistance $=2+\frac{2}{3}=\frac{8}{3} \Omega$

Current through ammeter $=\frac{2}{8 / 3}=\frac{6}{8}=\frac{3}{4} \mathrm{~A}$.
31. (1) For maximum energy, we have

External resistance of the circuit $=$ Equivalent internal resistance of the circuit
i.e. $R=r / 2$.
32. (1) Magnetic moment $M=n i A$
33. (2) Let the temperature of junction be θ then according to the following figure.

$\Rightarrow \frac{3 K \times A \times(100-\theta)}{l}=\frac{2 K A(\theta-50)}{l}+\frac{K A(\theta-20)}{l}$
$\Rightarrow 300-3 \theta=3 \theta-120 \Rightarrow \theta=70^{\circ} \mathrm{C}$.
34. (3)

$\therefore \frac{R \times 16}{R+16}+10=18$, on solving we get, $R=16 \Omega$.
35. (2)

SECTION - B (Attempt Any 10 Questions)

36. (2) The current flowing in the ring is $I=q f$.

The magnetic induction at the centre of the ring is
$B=\frac{\mu_{0} I}{2 R}=\frac{\mu_{0} q f}{2 R}(\operatorname{Using}(\mathrm{i}))$.
37. (4) Magnetic field due to the solid cylindrical conductor of radius R,
(i) For $d<R, I^{\prime}=\frac{I d^{2}}{R^{2}}$
$\int \vec{B} \cdot \overrightarrow{d l}=\mu_{0} I^{\prime} \Rightarrow B(2 \pi d)=\frac{\mu_{0} I d^{2}}{R^{2}} \Rightarrow B=\frac{\mu_{0} I d}{2 \pi R^{2}}$
$\therefore B \propto d$
(ii) For $d=R, B=\frac{\mu_{0} I}{2 \pi R}$ (maximum)
(iii) For $d=R, B=\frac{\mu_{0} I}{2 \pi d} \Rightarrow B \propto \frac{1}{d}$.
38. (3) Force on arm $A B$ due to current in conductor $X Y$ is
$F_{1}=\frac{\mu_{0}}{4 \pi} \frac{2 I i L}{L / 2}=\frac{\mu_{0} I i}{\pi}$
acting towards XY in the plane of loop.
Force on arm CD due to current in conductor XY is
$F_{2}=\frac{\mu_{0}}{4 \pi} \frac{2 I i L}{3(L / 2)}=\frac{\mu_{0} I i}{3 \pi}$
acting away from XY in the plane of loop.
\therefore Net force on the loop $=F_{1}-F_{2}$

$$
=\frac{\mu_{0} I i}{\pi}\left(1-\frac{1}{3}\right)=\frac{2}{3} \frac{\mu_{0} I i}{\pi} .
$$

39.

(3) $B=\frac{\mu_{0}}{4 \pi} \frac{2 i_{2}}{(r / 2)}-\frac{\mu_{0}}{4 \pi} \frac{2 i_{1}}{(r / 2)}=\frac{\mu_{0}}{4 \pi} \frac{4}{r}\left(i_{2}-i_{1}\right)$
$B=\frac{\mu_{0}}{4 \pi} \frac{4}{5}(2.5-5.0)=-\frac{\mu_{0}}{2 \pi}$.
Negative sing shows that B is acting inwards i.e., into the plane.
40. (4) $m=l \times$ area \times density

Area $\propto \frac{m}{l}$
$R \propto \frac{l}{\text { Area }} \propto \frac{l^{2}}{m}$
$R_{1}: R_{2}: R_{3}=\frac{l_{1}^{2}}{m_{1}}: \frac{l_{2}^{2}}{m_{2}}: \frac{l_{3}^{2}}{m_{3}}$
$R_{1}: R_{2}: R_{3}=\frac{25}{1}: \frac{9}{3}: \frac{1}{5}=125: 25: 1$.
41. (4) $(Q)_{\text {Balck body }}=A \sigma T^{4} t \Rightarrow Q \propto T^{4}$
$\Rightarrow Q_{2}=Q_{1}\left(\frac{T_{2}}{T_{1}}\right)^{4}=10\left(\frac{273+327}{273+27}\right)^{4}=10\left(\frac{600}{300}\right)^{4}=160 \mathrm{~J}$.
42. (3) Total energy radiated from a body $Q=A \varepsilon \sigma T^{4} t$
$\Rightarrow Q \propto A T^{4} \propto r^{2} T^{4} \quad\left(\therefore A=4 \pi r^{2}\right)$
$\Rightarrow \frac{Q_{P}}{Q_{Q}}=\left(\frac{r_{P}}{r_{Q}}\right)^{2}\left(\frac{T_{P}}{T_{Q}}\right)^{4}$
$\Rightarrow \frac{Q_{P}}{Q_{Q}}=\left(\frac{8}{2}\right)^{2}\left(\frac{273+127}{273+527}\right)^{4}=1$.
43. (4)As resistance of a bulb $R=\frac{\mathrm{v}^{2}}{P}$,

Hence $R_{1}: R_{2}: R_{3}=\frac{1}{100}: \frac{1}{60}: \frac{1}{60}$

Now the combined potential difference across B_{1} and B_{2} is same as the potential difference across B_{3}. Hence, W_{3} is more than W_{1} and W_{2}, being in series, carry same current and $R_{1}<R_{2}$, therefore $W_{1}<W_{2}$,
$\therefore W_{1}<W_{2}<W_{3}$.
44. (2) ρ - same, l-same, $A_{2}=\frac{1}{4} A_{1}\left(\right.$ as $\left.r_{2}=\frac{r_{1}}{2}\right)$

Byusing

$$
R=\rho \frac{l}{A} \Rightarrow \frac{R_{1}}{R_{2}}=\frac{A_{2}}{A_{1}} \Rightarrow \frac{R_{1}}{8}=\frac{1}{4} \Rightarrow R_{1}=2 \Omega
$$

Hence, $R_{e q}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}=\frac{2+8}{2+8}=\frac{8}{5} \Omega$.
45. (1) In parallel, $\frac{H_{1}}{H_{2}}=\frac{p_{1} t}{p_{2} t}=\frac{P_{1}}{P_{2}}=\frac{500}{200}=\frac{5}{2} 1999$

In series, $\frac{H_{1}}{H_{2}}=\frac{I^{2} R_{1} t}{I^{2} R_{2} t}=\frac{R_{1}}{R_{2}}=\frac{V^{2} / P_{1}}{V^{2} / P_{2}}$

$$
=\frac{P_{1}}{P_{2}}=\frac{200}{500}=\frac{2}{5} .
$$

46. (1) The potential difference across
$300 \Omega=60-30=30 \mathrm{~V}$
Therefore the effective resistance of voltmeter resistance R and 400Ω in parallel will be equal to 300Ω, as 60 V is equally divided between two parts.

So $300=\frac{R \times 400}{R+400}$
or $300 R+120000=400 R$ or $R=1200 \Omega$
47. (1) Work done
$W=Q\left(V_{B}-V_{A}\right) \Rightarrow\left(V_{B}-V_{A}\right)=\frac{W}{Q}$
$=\frac{10 \times 10^{-3}}{5 \times 10^{-6}} \mathrm{~J} / \mathrm{C}=2 \mathrm{kV}$.
48. (2) According to the figure, there is no other charge. A single charge when moved in a space of no field, does not experience any force. No work is done
$\mathrm{W}_{\mathrm{A}}=\mathrm{W}_{\mathrm{B}}=\mathrm{W}_{\mathrm{C}}=0$.
49. (1) $\tan \theta=\frac{\frac{k q^{2}}{x^{2}}}{m g} \Rightarrow \sin \theta=\frac{k q^{2}}{x^{2} m g}$
$\frac{x}{2 L}=\frac{k q^{2}}{x^{2} m g} \Rightarrow x^{3}=\frac{k q^{2} 2 L}{m g}$
$x=\left[\frac{q^{2} L}{2 \pi \varepsilon_{0} m g}\right]^{1 / 3}$
50. (4) $12 \mu F$ and $6 \mu F$ are in series and again are in parallel with $4 \mu F$. Therefore, resultant of these three will be $=\frac{12 \times 6}{12+6}+4=4+4=8 \mu F$

This equivalent system is in series with $1 \mu F$
Its equivalent capacitance $=\frac{8 \times 1}{8+1}=\frac{8}{9} \mu F$
Equivalent of $8 \mu F, 2 \mu F$ and $2 \mu F$
$=\frac{4 \times 8}{4+8}=\frac{32}{12}=\frac{8}{3} \mu F$
(i) and (ii) are in parallel and are in series with C
$\therefore \frac{8}{9}+\frac{8}{3}=\frac{32}{12}$ and
$C_{e q}=1=\frac{\frac{32}{9} \times C}{\frac{32}{9}+C} \Rightarrow C=\frac{32}{23} \mu F$.

CHEMISTRY

SECTION - A (35 Questions)

51. (2)

52. (3)
SN^{2} Reactivity $\propto \frac{1}{\text { steric hindrance }}$
53. (4)

The vapour pressure of 0.45 molar urea solution is equal to that of 0.45 molar solution of sugar.
54. (4)

The freezing point of 0.1 M urea is greater than that of 0.1 M KCl solution.
55. (3)
(a), (b) and (c)
56. (1)

Due to $\mathrm{C}-\mathrm{Cl}$ partial double bond character.
57. (3)
(1)-(iii), (2)-(i), (3)-(iv), (4)-(ii)
58. (2)

As concentration α B.P. $\alpha \frac{1}{\text { V.P }}$
So the correct order of Conc ${ }^{\mathrm{n}}$. as $3>2>1$.
59. (4)

Wurtz-Fittig reaction
60. (4)

Enantiomers have different melting point
61. (3)

There will be no movement of KCl or BaCl_{2}
62. (2)
$\frac{i-1}{n-1}$
63. (2)
(c) only
64. (2)

If both Assertion \& Reason are true but the Reason is not the correct explanation of the Assertion, then mark (2).
65. (4)

The azeotropic mixture cannot be separated into individual components as both the components boil at the same temperature.
66. (2)

67. (1)

If both Assertion \& Reason are true and the Reason is the correct explanation of the Assertion, then mark (1)
68. (1)

If both Assertion \& Reason are true and the Reason is the correct explanation of the Assertion, then mark (1).
69. (1)

$$
\mathrm{t}_{1 / 2}
$$

70. (3)

71. (3)
(a)-(ii), (b)-(iii), (c)-(iv), (d)-(i)
72. (2)

73. (1)

74. (4)

The stoichiometric coefficients of reaction has no relation to the order of reaction.
75. (3)
(1)-(i), (2)-(iv), (3)-(iii), (4)-(ii)
76. (4)

Since N is more electronegative, it will pull the electron of hydrogen towards itself H being having +1 oxidations state so N will have (-1/3) O.S.
77. (3)

Statement-I is correct and Statement-II is incorrect
78. (3)

79. (1)

80. (1)
(1)-(iii), (2)-(v), (3)-(i), (4)-(ii)
81. (4)
$\frac{\mathrm{M}}{11}$ [because Fe is going from +2 to +3 and sulphur from -1 to +4$]$.
82. (4)

Rate of reactivity of alcohol $3^{\circ}>2^{\circ}>1^{\circ}$.
83. (3)

84. (4)

Bromine is both reduced and oxidized
85. (4)
$+6$

SECTION - B (Attempt Any 10 Questions)

86. (4)

As there is no movement of ions.
87. (3)
y
88. (2)
+R and +I group \uparrow es $\mathrm{e}-$ density on benzne ring stability of benzylic carbon \uparrow es
SN^{1} reactivity \propto stability of carbocation.
89. (1)

Zero-order w.r.t. A
90. (2)
$\Delta \mathrm{E}$ for the forward reaction is $\mathrm{B}-\mathrm{A}$
91. (3)

Molecularity of slowest step is order of overall complex reaction.
92. (4)
$\mathrm{x}=6, \mathrm{y}=10, \mathrm{z}=22$
93. (4)
(i), (ii), (iv)
94. (2)

95. (2)

96. (4)
-1 and +1
97. (4)

Statement-I is incorrect and Statement-II is correct
98. (2)
p-nitro phenol is less acidic than o-nitro phenol
99. (2)
$\mathrm{Ph}-\mathrm{CH}_{2}-\mathrm{Br}+\mathrm{Mg} \xrightarrow[\text { ether }]{\text { dry }} \mathrm{PhCH}_{2} \mathrm{MgBr} \xrightarrow{\mathrm{CH}_{3} \mathrm{OH}} \mathrm{PhCH}_{3}$
100. (4)

