

PCB

NEET 2023-24

Mark 720

Group PRE FINAL ROUND -03

Date : 21/03/2024 Time: 3:20 Hours

Answer Key Version - R (PCB NEET 2023-24)

Physics					Chemistry				
Sec.A	11. 3	22. 2	33. 2	43. 4	Sec. A	61. 3	72. 2	83. 3	93. 4
01. 1	12. 4	23. 2	34. 3	44. 2	51. 2	62. 2	73. 1	84. 4	94. 2
02. 1	13. 3	24. 3	35. 2	45. 1	52. 3	63. 2	74. 4	85. 4	95. 2
03. 1	14. 2	25. 1	Sec. B	46. 1	53. 4	64. 2	75. 3	Sec. B	96. 4
04. 2	15. 2	26. 4	36. 2 ^S	in47.e 199	9 54. 4	65. 4®	76. 4	86. 4	97. 4
05. 1	16. 1	27. 2	37. 4	48. 2	55. 3	66. 2	77. 3	87. 3	98. 2
06. 3	17. 2	28. 1	38. 3	49. 1	56. 1	67. 1	78. 3	88. 2	99. 2
07. 2	18. 4	29. 1	39. 3 C	50. 4	57. 3	68. 1	79. 1	89. 1	100. 4
08. 1	19. 1	30. 2	40. 4		58. 2	69. 1	80. 1	90. 2	
09. 4	20. 1	31. 1	41. 4		59. 4	70. 3	81. 4	91. 3	
10. 4	21. 3	32. 1	42. 3		60. 4	71. 3	82. 4	92. 4	
Biology									
Part-I	110. 2	121. 2	132. 4	142. 2	Part-II	160. 4	171. 4	182. 4	192. 3
Sec.A	111. 1	122. 1	133. 1	143. 4	Sec.A	161. 4	172. 1	183. 2	193. 3
101. 3	112. 2	123. 3	134. 3	144. 2	151. 2	162. 3	173. 4	184. 1	194. 4
102. 2	113. 3	124. 4	135. 4	145. 3	152. 4	163. 2	174. 2	185. 1	195. 3
103. 2	114. 2	125. 3	Sec.B	146. 2	153. 2	164. 4	175. 3	Sec. B	196. 3
104. 1	115. 3	126. 4	136. 3	147. 2	154. 4	165. 4	176. 4	186. 3	197. 4
105. 1	116. 4	127. 2	137. 4	148. 3	155. 4	166. 3	177. 3	187. 2	198. 1
106. 1	117. 4	128. 3	138. 4	149. 1	156. 4	167. 2	178. 2	188. 1	199. 4
107. 1	118. 2	129. 1	139. 3	150. 3	157. 2	168. 1	179. 4	189. 3	200. 4
108.3	119. 4	130. 4	140. 2		158. 2	169. 1	180. 3	190. 3	
109. 2	120. 2	131. 3	141. 1		159. 3	170. 3	181. 2	191. 2	

PHYSICS

SECTION - A (35 Questions)

01. (1) According to Wien's displacement law

$$\lambda_m \propto \frac{1}{T} \Longrightarrow \lambda_{m_2} < \lambda_{m_1} \quad [\because T_1 < T_2]$$

There fore $I - \lambda$ graph for T_2 has lesser wavelength (λ_m) and so curve for T_2 will shift towards left side.

02. (1)

$$F = QE = \frac{QV}{d} \Longrightarrow 5000 = \frac{5 \times V}{10^{-2}} \Longrightarrow V = 10 \text{ volt.}$$

- 03. (1) Electric field inside shell is zero
- 04. (2) The two capacitors are in parallel so

$$C_{eq} = c = \frac{A\varepsilon_0}{d}$$

$$(V_A - V_B) = \left(\frac{15}{5+15}\right) \times 2000 \Longrightarrow V_A - V_B = 1500V$$

$$\Rightarrow 2000 - V_B = 1500V \Rightarrow V_B = 500V.$$

07. (2) Suppose electric field is zero at a point P lies at a distance d from the charge +Q

At
$$P \quad \frac{kQ}{d^2} = \frac{k(2Q)}{(a+d)^2}$$
$$\Rightarrow \frac{1}{d^2} = \frac{2}{(a+d)^2} \Rightarrow d = \frac{a}{\sqrt{2}-1}$$

Since d > a i.e. point P must lies on negative xaxis as shown at a distance from origin hence

$$x = d - a = \frac{a}{\sqrt{2} - 1} - a = \sqrt{2}a.$$

Actually *P* lies on negative x-axis so $x = -\sqrt{2}a$.

08. (1) The total energy before connection $= \frac{1}{2} \times 4 \times 10^{-6} \times (50)^{2} + \frac{1}{2} \times 2 \times 10^{-6} \times (100)^{2}$ $= 1.5 \times 10^{-2}$

When connected in parallel

$$4 \times 50 + 2 \times 100 = 6 \times V \Rightarrow V = \frac{200}{3}$$

Total energy after connection

$$=\frac{1}{2}\times6\times10^{-6}\times\left(\frac{200}{3}\right)^2=1.33\times10^{-2}J.$$

09. (4) Momentum $p = \sqrt{2mK}$; where K = kinetic energy = Q. V

$$\Rightarrow p = \sqrt{2mQV} \Rightarrow p \propto \sqrt{mQ}$$

$$\Rightarrow \frac{p_e}{p_{\alpha}} = \sqrt{\frac{m_e Q_e}{m_{\alpha} Q_{\alpha}}} = \sqrt{\frac{m_e}{2m_{\alpha}}}.$$

10. (4)

Work done in displacing charge of 5μ C from *B* to C is W = 5 × 10⁻⁶ ($V_C - V_B$) where

$$V_B = 9 \times 10^9 \times \frac{100 \times 10^{-6}}{0.4} = \frac{9}{4} \times 10^6 V$$

and $V_C = 9 \times 10^9 \times \frac{100 \times 10^{-6}}{0.5} = \frac{9}{5} \times 10^6 V$

IB>

so
$$W = 5 \times 10^{-6} \times \left(\frac{9}{5} \times 10^{6} - \frac{9}{4} \times 10^{6}\right) = -\frac{9}{4}V.$$

11 (3) Common potential

$$V = \frac{C_1 V_1}{C_1 + C_2} = \frac{10^{-2}}{16 \times 10^{-6}} = 625V.$$

- 12. (4)
- 13. (3) When the switch is open, 3 μ F and 6μ F capacitors are in series. Hence charge on each

capacitor
$$q = C_{eq}V = \frac{3 \times 6}{3+6} \times 9 = 18 \mu C$$

When the switch is closed, in the steady state no current will flow through the capacitor. Therefore the two resistors 3Ω and 6Ω will be in series.

Current in each resistor will be
$$I = \frac{9}{3+6} = 1 A$$

Now the 3μ F capacitor and 6μ F capacitor will be in parallel with and resistor respectively

Charge on 3μ F capacitor $q_1 = CV = 3 \times 3 = 9\mu C$

Charge on $6\mu F$ $q_2 = CV = 6 \times 6 = 36\mu C$

Charge flowing through the switch = increase in charge on the system consisting of right plate of 3μ F and left plate of 6μ F = $(-9+36) = 27 \mu$ C.

14. **(2)**
$$\phi = \frac{1}{\varepsilon_0} \times Q_{enc} = \frac{1}{\varepsilon_0} (2q).$$

15. (2) Charge on smaller sphere

= Total charge
$$\left(\frac{r_1}{r_1 + r_2}\right) = 30 \left(\frac{5}{5 + 10}\right) = 10 \mu C$$

16. **(1)**

17. (2)While drawing the dielectric plate outside, the capacitance decreases till the entire plate comes out and then becomes constant. So, *V* increases and then becomes constant

18. **(4)**
$$C_{air} = \frac{C_{medium}}{K} = \frac{C}{2}$$
.

19. **(1)** Magnetic field due to $i_1 = \frac{\mu_0 i_1}{2R} \frac{\theta_1}{2\pi}$ (Into the plane)

Magnetic field due to $i_2 = \frac{\mu_0 i_2}{2R} \frac{\theta_2}{2\pi}$ (Out of the plane)

For parallel combination

R

Now,
$$\frac{i_1}{i_2} = \frac{\rho i_2}{A} \times \frac{A}{\rho i_1} = \frac{l_2}{l_1}$$

$$\Rightarrow \frac{i_1}{i_2} = \frac{\frac{1}{4}(2\pi R)}{\frac{3}{4}(2\pi R)} = \frac{1}{3} \Rightarrow i_1 = \frac{i_2}{3} \Rightarrow i_2 = 3i_1$$

$$\therefore \text{ Now magnetic field,}$$

$$= \frac{\mu_0 i_1}{2R} \left(\frac{\theta_1}{2\pi}\right) - \frac{\mu_0 i_2}{2R} \left(\frac{\theta_2}{2\pi}\right)$$

$$= \frac{\mu_0 i_1}{2R} \left(\frac{3\pi}{2 \times 2\pi} \right) - \frac{\mu_0 i_2}{2R} \left(\frac{\pi}{2 \times 2\pi} \right)$$
$$= \frac{\mu_0 i_1}{2R} \left(\frac{3i_1}{4} - \frac{i_2}{4} \right) = \frac{\mu_0}{2R} \left(\frac{3i_1}{4} - \frac{3i_1}{4} \right) = 0.$$

$$20: \mathbf{r}(1) \underbrace{\mathbf{r}}_{E} \underbrace{\mathbf{$$

Side
$$a = 5 \times 10^{-2}$$
 m

Half of the diagonal of the square $r = \frac{a}{\sqrt{2}}$

Electric field at centre due to charge

$$QE = \frac{kQ}{\left(a / \sqrt{2}\right)^2}$$

Now field at

$$O = \sqrt{E^2 + E^2} = E\sqrt{2} = \frac{kq}{(a/\sqrt{2})^2} \sqrt{2}$$

$$=\frac{9\times10^9\times10^{-6}\times\sqrt{2}\times2}{(5\times10^{-2})^2}=1.02\times10^7\,\mathrm{N/C}$$

[upward]

21. (3) Let equivalent resistance between A and B be R, then equivalent resistance between C and D will also be R

$$R' = \frac{R}{R+1} + 2 = R$$
$$\implies R^2 - 2R - 2 = 0$$
$$\therefore R = \frac{2 \pm \sqrt{4+8}}{2} = \sqrt{3} + 1.$$

22. (2) Let l be the length of the wire. Magnetic field at the centre of the loop is

$$B = \frac{\mu_0 I}{2R} \quad \therefore B = \frac{\mu_0 \pi I}{l} (\because l = 2\pi R) \quad \dots \dots (i)$$
$$B' = \frac{\mu_0 n I}{2r} = \frac{\mu_0 \pi I}{2(l/2n\pi)} or, B' = \frac{\mu_0 n^2 \pi I}{l}$$

.....(ii) From eqns. (i) and (ii), we get $B' = n^2 B$.

23. (2) The formula of drift velocity is $v_d = \frac{eE}{m} \tau$ INSTITUTE PVIMTD.

Current density $J = \frac{I}{A} = \frac{neAv_d}{A} = nev_d$

Resistivity is
$$\rho = \frac{m}{ne^2\tau} \Rightarrow gt = \frac{m}{ne^2\rho}$$

Resistance is $R = \frac{V}{I}$

$$\rho \frac{l}{A} = \frac{El}{I} \Longrightarrow \rho = \frac{EA}{I} = \frac{E}{J}.$$

where, E = electric field, A = area of cross section e = electronic charge, n = number of density of electrons, $\tau =$ relaxation time.

24. (3) The circuit can be rearranged as

Net capacitance between

$$AB = \frac{4 \times 12}{4 + 12} + 2 = 5\mu F.$$

25. (1)

R

- 26. (4) In stretching of wire $R \propto \frac{1}{d^4}$, where d =Diameter of wire.
- 27. (2) In parallel combination equivalent conductivity

$$K = \frac{K_1 A_1 + K_2 A_2}{A_1 + A_2} = \frac{K_1 + K_2}{2} \text{ [As } A_1 = A_2\text{]}$$

28. (1) At point A the slope of the graph will be negative. Hence resistance is negative.

29. (1)Internal resistance
$$\propto \frac{1}{\text{Temperature}}$$

30. (2) Resistance across
$$XY = \frac{2}{3}\Omega$$

Ś

2Ω ₩₩

Total resistance = $2 + \frac{2}{3} = \frac{8}{3}\Omega$

Current through ammeter $=\frac{2}{8/3}=\frac{6}{8}=\frac{3}{4}A.$

31. (1) For maximum energy, we have

External resistance of the circuit = Equivalent internal resistance of the circuit

i.e. R = r/2.

- 32. (1) Magnetic moment M = niA
- 33. (2) Let the temperature of junction be θ then according to the following figure.

EMPOWERING NATION THROUGH EDUCATION !

$$\Rightarrow 300 - 3\theta = 3\theta - 120 \Rightarrow \theta = 70^{\circ}C.$$

$$\therefore \frac{R \times 16}{R+16} + 10 = 18$$
, on solving we get, $R = 16\Omega$.

35. **(2)**

SECTION - B (Attempt Any 10 Questions)

36. (2) The current flowing in the ring is I=qf(i) The magnetic induction at the centre of the ring is

$$B = \frac{\mu_0 I}{2R} = \frac{\mu_0 q f}{2R}$$
 (Using (i)).

37. (4) Magnetic field due to the solid cylindrical conductor of radius *R*,

(i) For
$$d < R$$
, $I' = \frac{Id^2}{R^2}$ CAREER INST

$$\int \vec{B} \cdot \vec{dl} = \mu_0 I' \Rightarrow B(2\pi d) = \frac{\mu_0 Id^2}{R^2} \Rightarrow B = \frac{\mu_0 Id}{2\pi R^2}$$

$$\therefore B \propto d$$

(ii) For
$$d = R$$
, $B = \frac{\mu_0 I}{2\pi R}$ (maximum)

(iii) For
$$d = R$$
, $B = \frac{\mu_0 I}{2\pi d} \Longrightarrow B \propto \frac{1}{d}$.

(3) Force on arm AB due to current in conductor XY is

$$F_1 = \frac{\mu_0}{4\pi} \frac{2IiL}{L/2} = \frac{\mu_0 Ii}{\pi}$$

acting towards XY in the plane of loop.

Force on arm CD due to current in conductor XY is

$$F_2 = \frac{\mu_0}{4\pi} \frac{2IiL}{3(L/2)} = \frac{\mu_0 Ii}{3\pi}$$

acting away from XY in the plane of loop.

 \therefore Net force on the loop = $F_1 - F_2$

$$= \frac{\mu_0 I i}{\pi} \left(1 - \frac{1}{3} \right) = \frac{2}{3} \frac{\mu_0 I i}{\pi}.$$

9. **(3)**
$$B = \frac{\mu_0}{4\pi} \frac{2i_2}{(r/2)} - \frac{\mu_0}{4\pi} \frac{2i_1}{(r/2)} = \frac{\mu_0}{4\pi} \frac{4}{r} (i_2 - i_1)$$

$$B = \frac{\mu_0}{4\pi} \frac{4}{5} (2.5 - 5.0) = -\frac{\mu_0}{2\pi}$$

Negative sing shows that B is acting inwards i.e., into the plane.

40. **(4)** $m = l \times area \times density$

Area
$$\propto \frac{m}{l}$$

R

$$R \propto \frac{l}{Area} \propto \frac{l^2}{m}$$

$$R_1: R_2: R_3 = \frac{l_1^2}{m_1}: \frac{l_2^2}{m_2}: \frac{l_3^2}{m_3}$$

$$R_1: R_2: R_3 = \frac{25}{1}: \frac{9}{3}: \frac{1}{5} = 125: 25: 1.$$

41. **(4)**
$$(Q)_{Balck\ body} = A\sigma T^4 t \Longrightarrow Q \propto T^4$$

$$\Rightarrow Q_2 = Q_1 \left(\frac{T_2}{T_1}\right)^4 = 10 \left(\frac{273 + 327}{273 + 27}\right)^4 = 10 \left(\frac{600}{300}\right)^4 = 160J.$$

42. (3) Total energy radiated from a body $Q = A \varepsilon \sigma T^{4} t$ $\Rightarrow Q \propto A T^{4} \propto r^{2} T^{4} \quad (\therefore A = 4\pi r^{2})$ $\Rightarrow \frac{Q_{P}}{Q_{Q}} = \left(\frac{r_{P}}{r_{Q}}\right)^{2} \left(\frac{T_{P}}{T_{Q}}\right)^{4}$ $\Rightarrow \frac{Q_{P}}{Q_{Q}} = \left(\frac{8}{2}\right)^{2} \left(\frac{273 + 127}{273 + 527}\right)^{4} = 1.$ 43. (4) As resistance of a bulb $R = \frac{v^{2}}{P}$, Hence $R_{1} : R_{2} : R_{3} = \frac{1}{100} : \frac{1}{60} : \frac{1}{60}$ Now the combined potential difference across B_1 and B_2 is same as the potential difference across B_3 . Hence, W_3 is more than W_1 and W_2 , being in series, carry same current and $R_1 < R_2$, therefore $W_1 < W_2$,

$$\therefore W_1 < W_2 < W_3.$$

44. **(2)**
$$\rho$$
 - same, l - same, $A_2 = \frac{1}{4}A_1\left(as \ r_2 = \frac{r_1}{2}\right)$

Byusing

$$R = \rho \frac{l}{A} \Longrightarrow \frac{R_1}{R_2} = \frac{A_2}{A_1} \Longrightarrow \frac{R_1}{8} = \frac{1}{4} \Longrightarrow R_1 = 2\Omega.$$

Hence, $R_{eq} = \frac{R_1 R_2}{R_1 + R_2} = \frac{2+8}{2+8} = \frac{8}{5} \Omega.$

45. (1) In parallel, $\frac{H_1}{H_2} = \frac{p_1 t}{p_2 t} = \frac{P_1}{P_2} = \frac{500}{200} = \frac{5}{21999}$ In series, $\frac{H_1}{H_2} = \frac{I^2 R_1 t}{I^2 R_2 t} = \frac{R_1}{R_2} = \frac{V^2 / P_1}{V^2 / P_2}$ $R_1 = 200 = 2$ CAREER INST

- $= \frac{P_1}{P_2} = \frac{200}{500} = \frac{2}{5}.$
- 46. (1) The potential difference across $300\Omega = 60 - 30 = 30V$

Therefore the effective resistance of voltmeter resistance R and 400 Ω in parallel will be equal to 300 Ω , as 60 V is equally divided between two parts.

So
$$300 = \frac{R \times 400}{R + 400}$$

- or 300R + 120000 = 400R or $R = 1200 \Omega$
- 47. (1) Work done

$$W = Q(V_B - V_A) \Longrightarrow (V_B - V_A) = \frac{W}{Q}$$

$$=\frac{10\times10^{-3}}{5\times10^{-6}}\,\mathrm{J/C}=2kV.$$

 (2) According to the figure, there is no other charge. A single charge when moved in a space of no field, does not experience any force. No work is done

$$W_{A} = W_{B} = W_{C} = 0$$

R

49. (1)
$$\tan \theta = \frac{\frac{kq^2}{x^2}}{mg} \Rightarrow \sin \theta = \frac{kq^2}{x^2 mg}$$

$$\frac{x}{2L} = \frac{kq^2}{x^2 mg} \implies x^3 = \frac{kq^2 2L}{mg}$$
$$x = \left[\frac{q^2 L}{2\pi\varepsilon_0 mg}\right]^{1/3}$$

50. (4) $12 \ \mu F$ and $6 \ \mu F$ are in series and again are in parallel with $4 \ \mu F$. Therefore, resultant of these

three will be
$$=\frac{12\times 6}{12+6}+4=4+4=8\mu F$$

This equivalent system is in series with $1 \, \mu F$

Its equivalent capacitance
$$=\frac{8 \times 1}{8+1} = \frac{8}{9} \mu F$$
(i)

Equivalent of $8\mu F$, $2\mu F$ and $2\mu F$

$$=\frac{4\times8}{4+8}=\frac{32}{12}=\frac{8}{3}\,\mu F$$
.....(ii)

RINSTITUTE(i) and (ii) are in parallel and are in series with C

$$\therefore \frac{8}{9} + \frac{8}{3} = \frac{32}{12}$$
 and

$$C_{eq} = 1 = \frac{\frac{32}{9} \times C}{\frac{32}{9} + C} \Longrightarrow C = \frac{32}{23} \mu F.$$

CHEMISTRY

SECTION - A (35 Questions)

$$\xrightarrow{\text{Cl} \xrightarrow{\text{aq NaOH}}} \xrightarrow{\text{OH} \text{PCC}} \xrightarrow{\text{CHO}}$$
52. (3)

$$SN^2Reactivity \propto \frac{1}{\text{steric hindrance}}$$

53. (4)

The vapour pressure of 0.45 molar urea solution is equal to that of 0.45 molar solution of sugar.

R 68. (1) 54. (4) If both Assertion & Reason are true and the The freezing point of 0.1 M urea is greater than Reason is the correct explanation of the Assertion, that of 0.1 M KCl solution. then mark (1). 55. **(3)** 69. (1) (a), (b) and (c) $t_{1/2}$ 56. (1) 70. (3) Due to C-Cl partial double bond character. 57. **(3)** (1)-(iii), (2)-(i), (3)-(iv), (4)-(ii) 58. (2) 71. (3)As concentration α B.P. $\alpha \frac{1}{VP}$ (a)-(ii), (b)-(iii), (c)-(iv), (d)-(i) So the correct order of $Conc^n$. as 3 > 2 > 1. 72. (2) 59. (4) Wurtz-Fittig reaction 60. **(4)** Since 1999 AB Enantiomers have different melting point 61. (3) 73. (1)There will be no movement of KCl or BaCl, 62. **(2) CAREER INST** TUTEA i – 1 n – 1 63. (2) 74. (4) (c) only The stoichiometric coefficients of reaction has no 64. (2) relation to the order of reaction. If both Assertion & Reason are true but the Reason 75. (3) is not the correct explanation of the Assertion, then (1)-(i), (2)-(iv), (3)-(iii), (4)-(ii) mark (2). 76. (4) 65. (4) Since N is more electronegative, it will pull the The azeotropic mixture cannot be separated into electron of hydrogen towards itself H being having individual components as both the components boil +1 oxidations state so N will have (-1/3) O.S. at the same temperature. 77. (3) 66. (2) Statement-I is correct and Statement-II is incorrect 78. (3)]+ CH₃MgBr $\xrightarrow{\text{H}_2\text{O}}$ (3°–OH) 67. (1) (1)

If both Assertion & Reason are true and the Reason is the correct explanation of the Assertion, then mark (1).

EMPOWERINGNATION THROUGH EDUCATION!

79.

R

