

NEET 2023-24

Mark Group 720 PCB

PRE FINAL ROUND -01

Date: 17/03/2024 Time: 3:20 Hours

Answer Key Version - S (PCB NEET 2023-24)

		- 103			• (. •				,
Physics					Chemistry				
Sec. A	11. 3	22. 3	33. 1	43. 1	Sec. A	61. 4	72. 2	83. 3	93. 3
01. 4	12. 3	23. 3	34. 4	44. 1	51. 4	62. 1	73. 2	84. 1	94. 3
02. 1	13. 4	24. 1	35. 2	45. 3	52. 1	63. 4	74. 3	85. 3	95. 3
03. 3	14. 4	25. 2	Sec. B	46. 3	53. 4	64. 4	75. 3	Sec. B	96. 1
04. 1	15. 3	26. 2	36. 1	47. 3	54. 4	65. 4	76. 3	86. 3	97. 4
05. 3	16. 1	27. 1	37. 2 Sin	48. 1	55. 2	66. 4	77. 2	87. 1	98. 4
06. 2	17. 2	28. 2	38. 1	49. 1	56. 2	67. 3	78. 2	88. 4	99. 3
07. 3	18. 3	29. 1	39. 1	50. 2	57. 2	68. 3	79. 3	89. 3	100. 3
08. 2	19. 2	30. 1	40. (2AR	EER INST	T 58 E 4 V	T.69.D. 1	80. 1	90. 3	
09. 1	20. 2	31. 2	41. 1		59. 2	70. 4	81. 1	91. 1	
10. 2	21. 3	32. 3	42. 4		60. 1	71. 4	82. 4	92. 2	
Biology									
Part-I Sec.A	110. 2	121. 3	132. 2	142. 4	Part-II Sec.A	160. 2	171. 2	182. 2	192. 2
	111. 4	122. 4	133. 4	143. 4		161. 3	172. 1	183. 4	193. 3
101. 1	112. 4	123. 1	134. 2	144. 4	151. 2	162. 2	173. 3	184. 3	194. 4
102. 4	113. 2	124. 2	135. 4	145. 3	152. 3	163. 3	174. 1	185. 2	195. 1
103. 4	114. 1	125. 4	Sec.B	146. 4	153. 4	164. 1	175. 4	Sec. B	196. 3
104. 3	115. 4	126. 4	136. 2	147. 4	154. 3	165. 2	176. 1	186. 2	197. 1
105. 3	116. 1	127. 4	137. 4	148. 4	155. 3	166. 4	177. 2	187. 2	198. 4
106. 4	117. 3	128. 3	138. 4	149. 3	156. 3	167. 3	178. 3	188. 3	199. 1
107. 2	118. 3	129. 4	139. 3	150. 2	157. 3	168. 1	179. 3	189. 2	200. 3
108. 4	119. 2	130. 2	140. 4		158. 4	169. 3	180. 3	190. 2	
109. 4	120. 1	131. 4	141. 1		159. 4	170. 4	181. 2	191. 3	

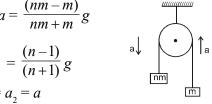
PHYSICS

SECTION - A (35 Questions)

01. **(4)**
$$a = \frac{S^2}{t^4} = \frac{(\text{metre})^2}{(\text{second})^4} = \text{m}^2 \text{ s}^{-4}$$

02. **(1)** KE. =
$$\frac{1}{2}$$
 mV²

$$[KE] = ML^2 T^{-2}$$


If unit of M and L are doubled

Then unit of K.E.

K.E. =
$$[(2M) (2L)^2 T^{-2}]$$

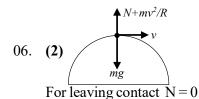
= $8 [ML^2 T^{-2}]$

unit of K.E. is 8 times.

03. **(3)**
$$a = \frac{(nm-m)}{nm+m}g$$

= $\frac{(n-1)}{(n+1)}g$

$$a_1 = a_2 = a$$


$$a_{cm} = \frac{nma_1 - ma_2}{(nm+m)} = \frac{(n-1)}{(n+1)} \times a$$

$$a_{cm} = \frac{(n-1)^2}{(n+1)^2} g$$
.

04. (1) Velocity can't change its value suddenly.

05. **(3)**
$$a = \frac{F}{M}$$

$$T = \frac{4M}{5} \times a = \frac{4M}{5} \times \frac{F}{M} = \frac{4F}{5} \implies T = 4 \text{ N}.$$

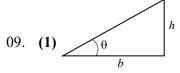
$$\Rightarrow \frac{mv^2}{R} = mg \Rightarrow v = \sqrt{gR}.$$

07. **(3)** use
$$m_1 v_1 = m_2 v_2 = P$$

K.E. $= \frac{1}{2} m v_1^2 + \frac{1}{2} m_2 v_2^2$
 $= \frac{1}{2} m_1 \left(\frac{P}{m_1}\right)^2 + \frac{1}{2} m_2 \left(\frac{P}{m_2}\right)^2$
 $= \frac{1}{2} \frac{P^2 (m_2 + m_1)}{m_1 m_2}$.

08. **(2)**
$$x = 6t$$

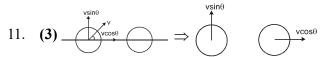
$$y = 8t - 5t^2$$


$$\frac{dx}{dt} = 6 \qquad \qquad \frac{dy}{dt} = 8 - 10t$$

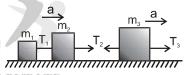
at
$$t = 0$$

$$V_x = 6 \text{ m/sec}$$

$$V = 8 \text{m/sec}$$


$$V = \sqrt{V_y^2 + V_x^2} = \sqrt{8^2 + 6^2} = 10 \text{ m/sec}$$

as
$$\upsilon = \sqrt{Rg \tan \theta}$$
 \Rightarrow $h = \frac{\upsilon^2 b}{Rg}$


10. **(2)**
$$\frac{H}{R} = \frac{\tan \theta}{4}$$

$$\theta = 45^{\circ} \& R = 36 \text{ m}$$
 : $H = 9 \text{ m}$.

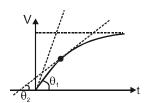
be fore collision after collision So angle between velocity vectors is 90°

12. **(3)**
$$a = \frac{60}{10 + 20 + 30} = 1 \text{ ms}^{-2}$$

$$\Rightarrow T_2 = (m_1 + m_2) \ a = (10 + 20) \times 1 = 30 \ \text{N}.$$

13. (4) It can be observed that component of acceleration perpendicular to velocity is $a = 5 \text{m/s}^2$

$$\therefore \text{ radius} = \frac{v^2}{a_c} = \frac{25}{5} = 5 \text{ metre.}$$


- 14. **(4)**
- 15. (3) Let v be the speed of B at lowermost position, the speed of A at lowermost position is 2v. From conservation of energy

$$\frac{1}{2}$$
 m $(2v)^2 + \frac{1}{2}$ mv² = mg $(2l)$ + mgl.

Solving we get
$$v = \sqrt{\frac{6}{5}gl}$$
.

16. (1) As the slope of tangent decreases, velocity also decreases with time.

after time distance becomes constant i.e particle stops.

17. **(2)**

The length of string AB is constant.

 \Rightarrow speed A and B along the string are same u sin $\theta = V$ $u \sin \theta = V$

$$u = \frac{V}{\sin \theta}$$

18. **(3)** $[Y] = [F^a A^b D^c]$ $[ML^{-1}T^{-2}] = [(MLT^{-2})^a (L^2)^b (ML^{-3})^c]$ equating power of M, L and T

$$1 = a + c,$$

 $-2 = -2a$

$$-1 = a + 2b - 3c$$

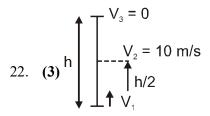
 $a = 1$, $c = 0$

$$b = -1$$

$$[Y] = F A^{-1} D^{0}.$$

19. **(2)** $[h] = ML^2T^{-1}$

$$[V_s] = \frac{[W]}{[Q]} = \frac{ML^2T^{-2}}{AT} = ML^2T^{-3}A^{\text{ince 1999}}$$


$$[\phi] = ML^2T^{-2}$$

$$[P] = MLT^{-1}.$$

- 21. (3) $W_G W_f = 0 \Rightarrow mgh = \mu mgCAREER INSTITUTE PVT.L$ h = (0.2)l

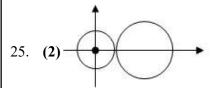
$$\Rightarrow l = \frac{1.5}{0.2}$$

$$l = 7.5 \text{ m} = (3 + 3 + 1.5) \text{ m}.$$

$$V_2^2 = V_3^2 + 2g \frac{h}{2}$$

$$\Rightarrow (10)^2 = 2 \times 10 \times \frac{h}{2}$$

$$\Rightarrow h = \frac{100}{10} = 10 \text{ m}$$


23. (3) It can be observed that power delivered to particle by force F is -

$$P = Fv = K$$
.

The power is constant. Hence work done by force in time t is -

$$\Delta W = Pt = Kt$$

24. (1) $W_s + W_f = \Delta K$ $-\Delta U + W_f = -K_i$ - $U_f - \mu mgx = -K_i$ $\frac{1}{2} Kx^2 + \mu mgx = \frac{1}{2} mu^2$ $100 x^2 + 2(0.1) (50) (10) x = 50 \times 4$ $x^2 + x - 2 = 0$ x = 1 m.

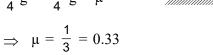
$$X_{com} = \frac{m \times 0 + 2m \times (3a)}{m + 2m} = 2a.$$

26. **(2)** a = bt

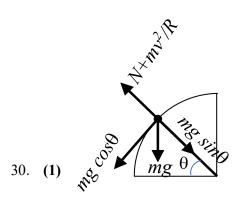
$$\frac{dv}{dt} = bt$$

$$\int_{u}^{v} dv = \int_{0}^{t} bt \, dt$$

$$V = u + \frac{bt^2}{2}$$

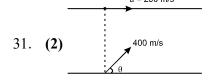

$$[V = u + \frac{bt^2}{2}]$$

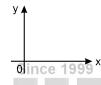
27. **(1)** $W = \vec{F} \cdot \vec{s} = (-2\hat{i} + 15\hat{j} + 6\hat{k}) \cdot 10\hat{j}$


$$x_{cm} = \frac{\int dmx}{\int dm} = \frac{\int (\lambda_0 x dx)x}{\int \lambda dx} = \frac{\int_0^L \lambda_0 x^2 dx}{\int_0^L \lambda_0 x dx} = \frac{2L}{3}.$$

29. (1) Apply system equation

$$\frac{\mathsf{m}}{\mathsf{4}}\,\mathsf{g} = \frac{\mathsf{3m}}{\mathsf{4}}\,\mathsf{g} \times \mathsf{\mu}$$





$$N + \frac{mv^2}{R} = mg\sin\theta$$

$$N = mg\sin\theta - \frac{mv^2}{R}$$

as
$$\theta \uparrow \Rightarrow N \uparrow$$

To hit, $400 \cos \theta = 200$

 $\{ \dots \text{ Both travel equal distance along horizontal, of } \}$ their start and coordinates an x axis are same} **CAREER INSTI**

$$\Rightarrow \theta = 60^{\circ}$$
.

32. **(3)**
$$V_{com} = \frac{200 \times 10\hat{i} + 500(3\hat{i} + 5\hat{j})}{200 + 500}$$
$$= \frac{20\hat{i} + 15\hat{i} + 25\hat{j}}{7} = 5\hat{i} + \frac{25}{7}\hat{j}.$$

33. **(1)**
$$V = \sqrt{5lg} = \sqrt{5 \times 6.4 \times 10} = 17.9 \text{m/s}$$

34. **(4)**
$$\Delta V = V_2 - V_1$$

 $= 0$
 $\Delta \vec{V} = \vec{V}_2 - \vec{V}_1$
 $|\Delta \vec{V}| = \sqrt{V_2^2 + V_1^2 + 2V_1V_2 \cos 120^\circ}$
 $= \sqrt{V^2 + V^2 + 2V^2 \cos 120^\circ}$
 $= \sqrt{2V^2 + 2V^2 \left(\frac{-1}{2}\right)}$
 $|\Delta \vec{V}| = V$

35. **(2)**
$$X_{CM} = \frac{0 \times m + m \times a + m \times \frac{a}{2}}{m + m + m} = \frac{a}{2}$$
,

$$Y_{CM} = \frac{0 \times m + 0 \times m + m \times \frac{a\sqrt{3}}{2}}{m + m + m} = \frac{a\sqrt{3}}{6},$$

SECTION - B (Attempt Any 10 Questions)

36. (1) As block is shifted slowly $\Delta K.E. = 0$

$$\therefore W_g + W_f + W_F = 0$$

Work done:

=
$$Mgh_1 + Mgh_2 + Mgh_3 + \mu_1 Mgl_1 + \mu_2 Mgl_2 + \mu_3 Mgl_3$$

$$= Mg (h_1 + h_2 + h_3) + Mg (\mu_1 l_1 + \mu_2 l_2 + \mu_3 l_3)$$

$$=$$
 Mg (8 + 0.2 + 0.4 + 0.4) $=$ 90 J.

37. **(2)**
$$W = \int \vec{F} \cdot d\vec{s} = \int (3t\hat{i} + 5\hat{j}) \cdot (4t \ dt \ \hat{i})$$

$$= \int_{0}^{2} 12t^{2}dt = \frac{12\left[t^{3}\right]_{0}^{2}}{3} = 32J.$$

38. **(1)**
$$m\vec{V}_m = -M\vec{V}_b$$

$$m(\vec{V}_{rel} + \vec{V}_b) = -M\vec{V}_b$$

$$\vec{V_b} = \frac{-m\vec{V_{rel}}}{M+m}$$

 $\Rightarrow \vec{V}_b$ will be opposite to V_{rel} .

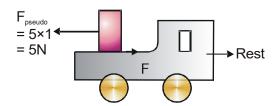
39. (1)
$$\Delta U = \frac{1}{2} \frac{m_1 m_2}{(m_1 + m_2)} (V_1 - V_2)^2 = \frac{100}{3}$$

$$(V_1 - V_2)^2 \times \frac{2\text{m.m}}{2(\text{m} + 2\text{m})} = \frac{100}{3}$$

putting m = 1 kg

$$(V_1 - V_2) = 10 \text{ m/sec.}$$

40. **(2)** Case (1):


$$a = \frac{F}{3m}$$

$$N_1 = m \times a$$

Similarly in case (2)

$$N_2 = 2m \times a \Rightarrow \frac{N_1}{N_2} = \frac{1}{2}.$$

41. (1) Solving from the frame of truck

$$f \le \mu mg = 6$$

 $\Rightarrow f = 5N.$

42. (4) $0.2 \times 100 \text{ g} \longrightarrow \text{F}$

for motion to start

$$\begin{aligned} F & \geq 0.2 \times 100 \ g + 0.3 \times 300 \ g = 1100 \ N \\ F_{min} & = 1100 \ N. \end{aligned}$$

43. (1) $N = mg + Q \cos \theta$

frictional force $f = \mu(mg + Q \cos \theta)$

$$P + Q \sin \theta = \mu(mg + Q \cos \theta)$$

$$\mu = \frac{P + Q \sin \theta}{mg + Q \cos \theta}$$

44. (1) From given conditions:

$$V_A = V_B \cos 37^0 = 15.\frac{4}{5} = 12 \text{ m/sec.}$$

:. time of flight of A(t)=
$$\sqrt{\frac{2\times 20}{10}}$$
 = 2 sec.

$$\Rightarrow$$
 Range = $V_{\Delta}t = 24 \text{ m}.$

- 45. (3)
- 46. **(3)** Density, $\rho = \frac{m}{V}$

$$\Rightarrow \left| \frac{\Delta \rho}{\rho} \right|_{\text{max}} = \frac{m}{\pi r^2 l} = \left| \frac{\Delta m}{m} \right| + 2 \left| \frac{\Delta r}{r} \right| + \left| \frac{\Delta l}{l} \right|$$
 1999

$$=\frac{0.01}{0.4} + \frac{2(0.03)}{6} + \frac{0.04}{8}$$

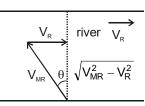
% error in density = $\left(\frac{\Delta \rho}{\rho}\right) \times 100\%$ AREER INST

$$= \left(\frac{1}{0.4} + \frac{6}{6} + \frac{4}{8}\right)\% = (2.5 + 1 + 0.5)\% = 4\%$$

47. **(3)** MSR = 2.5 mm

$$CSR = 45 \times \frac{0.5}{50} mm = 0.45 mm$$

Diameter reading = Reading of crew gauge = 2.5 + 0.45 - (-0.03) = 2.98 mm.


48. (1) $\frac{dx}{dt}$ = slope ≥ 0 always increasing

$$\frac{dx}{dt} < 0$$
; and at $t \to \infty \frac{dx}{dt} \to 0$

 $\frac{dx}{dt} > 0$ for first half $\frac{dx}{dt} < 0$ for second half.

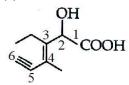
$$\frac{dx}{dt}$$
 = constant

- 49. (1) Work done by a force is positive if displacement is in direction of force and work done by a force is negative if displacement is in direction opposite to that of force.
- 50. **(2)** 15 min = 1/4 hr.

$$t = \frac{d}{V_y}$$

$$\Rightarrow \frac{1}{4} = \frac{1}{\sqrt{V_{MR}^2 - V_R^2}} = \frac{1}{4} = \frac{1}{\sqrt{5^2 - V_R^2}}$$

$$\Rightarrow V_R = 3 \text{ km/h}$$


CHEMISTRY

SECTION - A (35 Questions)

51. (4)

Number of moles of oxygen = $2 \times$ number of moles of given compounds.

- **52. (1)** 1
- 53. (4) If both assertion and reason are false.
- 54. **(4)** E⁺ attacks on ring which has more e⁻ density.
- 55. (2) 1 is staggered and 2 is eclipsed.
- 56. **(2)** 2s
- 57. (2) As values of m is from –1 to +1 including zero.
- 58. **(4)** All the above
- 59. (2) Higher are number of αH , more the hyperconjugating structures, more the stability of the compound.
- 60. (1) 1, 2 and 3
- 61. **(4)** Helium nuclei, which impinged on a metal foil and got scattered.
- **62. (1)** 1
- 63. (4)

- **64. (4)**
 - (A) is elimination, (B) is substitution and (C) is addition reaction.
- 65. **(4)** (1)-(iv), (2)-(iii), (3)-(ii), (4)-(i)
- 66. **(4)**

$$X_3 = \frac{X_1 X_2}{X_1 + X_2}$$

- 67. **(3**)
 - (1)-(iv), (2)-(ii), (3)-(i), (4)-(iii)
- 68. **(3**

Four primary amines are possible. These are: CH₃CH₂CH₂CH₂NH₂, (CH₃)₂CH–CH₂NH₂, CH₃CH(NH₂)CH₂CH₃ and (CH₃)₃CNH₂.

69. (1) 9σ and 9π

- 70. **(4)** Statement-I is incorrect and Statement-II is correct
- 71. **(4)** (1)-(iv), (2)-(iii), (3)-(ii), (4)-(i)
- 72. **(2)** 3, 3 and 3 respectively
- 73. **(2)** –COOH, –SO₃H, –CONH₂, –CHO
- 74. **(3)** (A) \rightarrow (iii), (B) \rightarrow (iv), (C) \rightarrow (ii), (D) \rightarrow (i)
- 75. **(3)** Three, that is, CH₃OCH₂CH₂CH₃, CH₃-O-CH(CH₃), and CH₃CH₂OCH₂CH₃.
- 76. **(3**)

Wt. of solvent = Wt. of solution – Wt. of solute = $[1000 \times 1.02 - 20.5 \times 60] = 897$ g.

$$m = \frac{\text{Moles of CH}_3\text{COOH}}{\text{Wt. of solvent in kg}} = \frac{2.05 \times 1000}{897}$$
$$= 2.285$$

77. **(2**)

Mol. wt. of H_3PO_4 is 98 and change in its valence = 1.

Eq. wt. of
$$H_3PO_4 = \frac{\text{Mol. wt.}}{\text{Change in valency}}$$

= 98/1 = 98

78. **(2)**

5, 6-Diethyl-3-methyldec-4-ene

79. **(3**

NO₂⁺, AlCl₃, SO₃ and CH₃C=O are electrophiles.

80. (1)

Three, that is, d-tartaric acid, 1-tartaric acid and meso-tartaric acid.

81. (1)

$$2NaHCO_3 \longrightarrow Na_2CO_3 + H_2O + CO_2$$

2 mol of NaHCO₃ on complete decomposition gives 1 mol of Na₂CO₃.

So, 0.2 mol of NaHCO₃ on complete decomposition gives 0.1 mol of Na₂CO₃.

82. (4)

According to stoichiometry, they should react as follows:

$$4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(l)$$

 $4 \text{ mol} \quad 5 \text{ mol} \quad 4 \text{ mol} \quad 6 \text{ mol}$
 $0.8 \text{ mol} \quad 1 \text{ mol} \quad 0.8 \text{ mol} \quad 1.2 \text{ mol}$
In this reaction 1 mole of O_2 and 0.8 mole of NH_3
are consumed. There by indicating complete consumption of O_2 .

83. **(3**)

Order of stability of carbanions is $1^{\circ} > 2^{\circ} > 3^{\circ}$.

- 84. (1) II > I > III
- 85. **(3)** As both the carbon atoms of each of the three double bonds are differently substituted, therfore, $2^3 = 8$ geometrical isomers are possible.

SECTION - B (Attempt Any 10 Questions)

- 86. (3) Statement-I is correct but Statement II is incorrect. Zeros at the end or right of a number are significant provided they are on the right side of the decimal point.
- 87. (1) Molecular weight of the metal chloride

$$=\frac{0.72\times22400}{100}=161.28\,\mathrm{g}$$

Weight of chlorine in metal chloride

$$=\frac{65.5\times161.28}{100}=105.64\,\mathrm{g}$$

So, Mole atoms of chlorine = $\frac{105.64}{35.5}$ = 3

Hence, metal chloride is MCl,

- 88. **(4)** 4-chloro-3-ethylcyclohexanol
- 89. **(3)**

- 90. (3) Charge of electron
- 91. **(1)** As halogens are most electronegative so the configuration is ns² np⁵.
- 92. **(2)**

Since 1999

CAREER INST

Carbanions are stabilised by electron withdrawing groups. – NO₂ is stronger electron withdrawing group as compared to – CHO. At ortho-position, the effect is more pronounced.

- [93] (3) +NO₂ group is meta-directing, thus will stabilize a electrophile at m-position.
- 94. (3)

$$\lambda = \frac{h}{\sqrt{2m(KE)}} = 0.3328 \text{ nm}$$

- 95. **(3)** As maximum number of electrons in any orbit, sub-orbit or orbital is decided by Pauli's law.
- 96. (1) Non-superimposable on its mirror image.
- 97. **(4)** The two stereoisomers are not mirror images and hence, the diastereomers.
- 98. (4) Six isomers are

$$F$$
 $C=C$
 C
 C
 C
 C
 C
 C

- 99. **(3)** 2 and 3
- 100. **(3)**