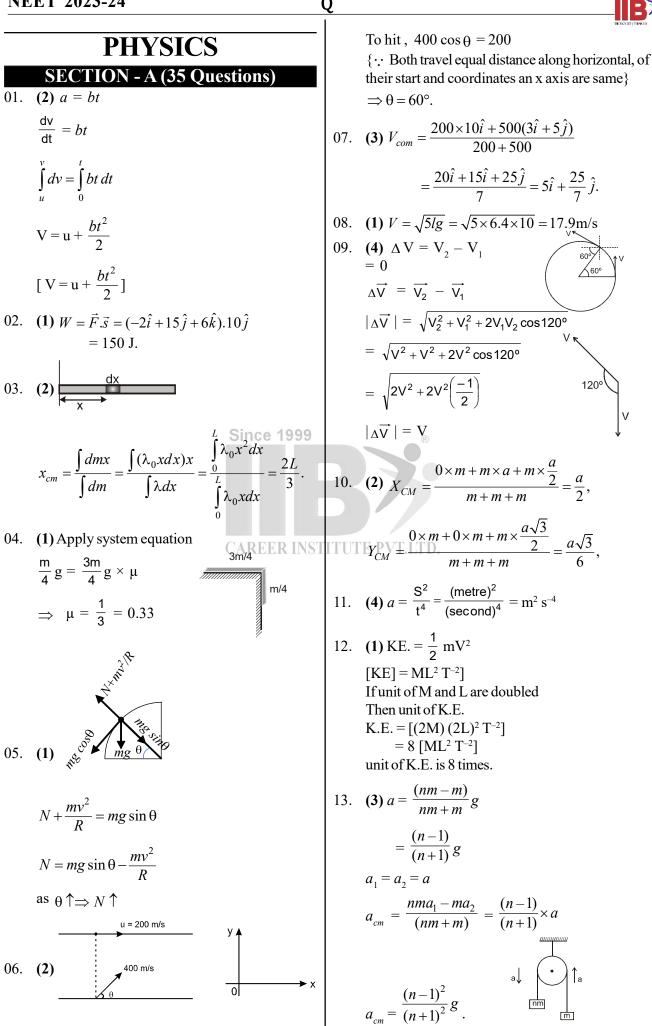


PCB

NEET 2023-24

Mark 720


Group PRE FINAL ROUND -01

Date : 17/03/2024 Time: 3:20 Hours

Answer Key Version - Q (PCB NEET 2023-24)

Physics					Chemistry				
Sec. A	11. 4	22. 3	33. 3	43. 1	Sec. A	61. 4	72. 1	83. 2	93. 4
01. 2	12. 1	23. 4	34. 1	44. 1	51. 3	62. 1	73. 4	84. 3	94. 3
02. 1	13. 3	24. 4	35. 2	45. 2	52. 2	63. 4	74. 4	85. 3	95. 3
03. 2	14. 1	25. 3	Sec. B	46. 1	53. 2	64. 4	75. 4	Sec. B	96. 3
04. 1	15. 3	26. 1	36. 1 ^S	in47.e 199	9 54. 3	65. 2®	76. 4	86. 1	97. 1
05. 1	16. 2	27. 2	37. 4	48. 1	55. 1	66. 2	77. 3	87. 2	98. 4
06. 2	17. 3	28. 3	38. 1	49. 1	56. 1	67. 2	78. 3	88. 3	99. 3
07. 3	18. 2	29. 2	39. 1 C	50. 2	57. 4	68. 4	79. 1	89. 3	100. 3
08. 1	19. 1	30. 2	40. 3		58. 3	69. 2	80. 4	90. 3	
09. 4	20. 2	31. 3	41. 3		59. 1	70. 1	81. 4	91. 1	
10. 2	21. 3	32. 3	42. 3		60. 3	71. 4	82. 2	92. 4	
Biology									
Part-I Sec.A	110. 4	121. 4	132. 4	142. 4	Part-II Sec.A	160. 2	171. 3	182. 1	192. 1
	111. 1	122. 4	133. 1	143. 4		161. 2	172. 2	183. 3	193. 4
101. 4	112. 4	123. 2	134. 2	144. 3	151. 1	162. 3	173. 3	184. 1	194. 1
102. 4	113. 4	124. 1	135. 4	145. 2	152. 2	163. 4	174. 1	185. 4	195. 3
103. 3	114. 3	125. 4	Sec.B	146. 2	153. 3	164. 3	175. 2	Sec. B	196. 2
104. 4	115. 3	126. 1	136. 1	147.4	154. 3	165. 3	176. 4	186. 3	197. 2
105. 2	116. 4	127. 3	137. 4	148. 4	155. 3	166. 3	177. 3	187. 2	198. 3
106. 4	117. 2	128. 3	138. 4	149. 3	156. 2	167. 3	178. 1	188. 3	199. 2
107. 2	118. 4	129. 2	139. 4	150. 4	157. 2	168. 4	179. 3	189. 4	200. 2
108. 4	119. 4	130. 1	140. 3		158. 4	169. 4	180. 4	190. 1	
109. 2	120. 2	131. 3	141. 4		159. 3	170. 2	181. 2	191. 3	

Q

22. (3) $a = \frac{60}{10 + 20 + 30} = 1 \text{ ms}^{-2}$ 14. (1) Velocity can't change its value suddenly. 15. **(3)** $a = \frac{F}{M}$ $\xrightarrow{m_3} \xrightarrow{a}$ $\Rightarrow T_2 = (m_1 + m_2) a = (10 + 20) \times 1 = 30 \text{ N}.$ 23. (4) It can be observed that component of $T = \frac{4M}{5} \times a = \frac{4M}{5} \times \frac{F}{M} = \frac{4F}{5} \implies T = 4 N.$ acceleration perpendicular to velocity is $a_c = 5 \text{m/s}^2$ \therefore radius = $\frac{v^2}{a} = \frac{25}{5} = 5$ metre. $A N+mv^2/R$ 24. (4) (3)Let v be the speed of B at lowermost position, 16. **(2)** 25. the speed of A at lowermost position is 2v. From conservation of energy For leaving contact N = 0 $\frac{1}{2}$ m (2v)² + $\frac{1}{2}$ mv² = mg (2l) + mgl. $\Rightarrow \frac{mv^2}{R} = mg \Rightarrow v = \sqrt{gR}.$ Solving we get $v = \sqrt{\frac{6}{5}gl}$. 17. (3) use $m_1 v_1 = m_2 v_2 = P$ 26. (1) As the slope of tangent decreases, velocity also K.E. = $\frac{1}{2}mv_1^2 + \frac{1}{2}m_2v_2^2$ decreases with time. **Since 1999** after time distance becomes constant i.e particle $=\frac{1}{2} m_1 \left(\frac{P}{m_1}\right)^2 + \frac{1}{2} m_2 \left(\frac{P}{m_2}\right)^2$ stops. $=\frac{1}{2} \frac{P^2(m_2+m_1)}{m_1m_2}.$ CAREER INSTITUTE P. $y = 8t - 5t^2$ 18. (2) x = 6t $\frac{dx}{dt} = 6$ $\frac{dy}{dt} = 8 - 10t$ at t = 0 $V_v = 8 \text{m/sec}$ $V_{v} = 6 \text{ m/sec}$ $V = \sqrt{V_y^2 + V_x^2} = \sqrt{8^2 + 6^2} = 10 \text{ m/sec}$ 27. θ The length of string AB is constant. 19. (1) \Rightarrow speed A and B along the string are same u sin $\theta = V$ $u \sin \theta = V$ as $v = \sqrt{Rg} \tan \theta$ $u = \frac{V}{\sin \theta}$ $h = \frac{v^2 b}{R a}$ 28. (3) $[Y] = [F^a A^b D^c]$ $[ML^{-1}T^{-2}] = [(MLT^{-2})^{a}(L^{2})^{b}(ML^{-3})^{c}]$ 20. (2) $\frac{H}{R} = \frac{\tan \theta}{4}$ equating power of M, L and T 1 = a + c, -1 = a + 2b - 3c $\theta = 45^{\circ} \& R = 36 m$ \therefore H = 9 m. a = 1, c = 0-2 = -2ab = -1 $[Y] = F A^{-1} D^0.$ 21. vcosθ (3) 29. (2) $[h] = ML^2T^{-1}$ be fore collision after collision $[V_s] = \frac{[W]}{[O]} = \frac{ML^2T^{-2}}{AT} = ML^2T^{-3}A^{-1}$ So angle between velocity vectors is 90°

Q

$$|\phi| = Mt^{2T-2}
|P| = MLT^{-1}.
30. (2)
31. (3) $W_0 - W_r = 0 \Rightarrow mgh = \mu mgl \\ h = \mu l \\ h = (0.2)l \\ \Rightarrow l = \frac{15}{0.2} \\ l = 7.5 m = (3 + 3 + 1.5) m. \\ \downarrow = \frac{1}{7.5 m} = (3 + 1 + 1.5) m. \\ \downarrow = \frac{1}{7.5 m} = (3 + 1 + 1.5) m. \\ \downarrow = \frac{1}{7.5 m} = \frac{1}{7.5 m} = (3 + 1 + 1.5) m. \\ \downarrow = \frac{1}{7.5 m} = \frac{1$$$

EMPOWERINGNATION THROUGH EDUCATION!

NEET 2023-24
45. (2) 15 min = 1/4 hr.

$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}\sqrt{2}} = \frac{1}{\sqrt{2}} = \frac{$$

- 69. (2) Higher are number of αH , more the hyperconjugating structures, more the stability of the compound.
- 70. (1) 1, 2 and 3
- 71. **(4)** Helium nuclei, which impinged on a metal foil and got scattered.
- 72. **(1)** 1 73. **(4)**

- 74. **(4)** (A) is elimination, (B) is substitution and (C) is addition reaction.
- 75. **(4)** (1)-(iv), (2)-(iii), (3)-(ii), (4)-(i)
- 76. **(4)**

$$X_{3} = \frac{X_{1}X_{2}}{X_{1} + X_{2}}$$

- 77. (3) (1)-(iv), (2)-(ii), (3)-(i), (4)-(iii)
 78. (3) Four primary amines are possible. These are: CH₃CH₂CH₂CH₂CH₂NH₂, (CH₃)₂CH₂CH₂CH₂NH₃,
 - $CH_{3}CH(NH_{2})CH_{2}CH_{3}$ and $(CH_{3})_{3}CNH_{2}$.
- 79. (1) 9σ and 9π
- 80. (4) Statement-I is incorrect and Statement-II is correct
- 81. (4) (1)-(iv), (2)-(iii), (3)-(ii), (4)-(i)
- 82. (2) 3, 3 and 3 respectively
- 83. (2) $-COOH, -SO_3H, -CONH_2, -CHO$
- 84. (3) (A) \rightarrow (iii), (B) \rightarrow (iv), (C) \rightarrow (ii), (D) \rightarrow (i)
- 85. (3) Three, that is, $CH_3OCH_2CH_2CH_3$, $CH_3-O-CH(CH_3)_2$ and $CH_3CH_2OCH_2CH_3$.

SECTION - B (Attempt Any 10 Questions)

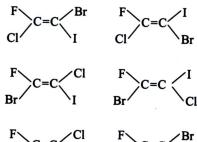
- 86. (1) As halogens are most electronegative so the configuration is ns² np⁵.
 87. (2)
 - (2) Carbanions are stabilised by electron withdrawing groups. $-NO_2$ is stronger electron withdrawing group as compared to -CHO. At ortho-position, the effect is more pronounced.
- 88. (3)
 -NO₂ group is meta-directing, thus will stabilize a electrophile at m-position.
 98.
 98.
 99.
- 89. **(3)**

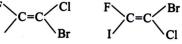
$$\lambda = \frac{h}{\sqrt{2m(KE)}} = 0.3328 \text{ nm}$$

90. **(3)**

As maximum number of electrons in any orbit, suborbit or orbital is decided by Pauli's law. 91. **(1)**

0


Non-superimposable on its mirror image.


92. (4)

The two stereoisomers are not mirror images and hence, the diastereomers.

93. (4)

Six isomers are

94. (3) 2 and 3 95. (3)

NH.

- TUTEStatement-I is correct but Statement II is incorrect. Zeros at the end or right of a number are significant provided they are on the right side of the decimal point.
- 97. **(1)**

=

Molecular weight of the metal chloride

$$\frac{0.72 \times 22400}{100} = 161.28\,\mathrm{g}$$

-OH

Weight of chlorine in metal chloride

$$=\frac{65.5\times161.28}{100}=105.64\,\mathrm{g}$$

So, Mole atoms of chlorine $=\frac{105.64}{35.5}=3$

Hence, metal chloride is MCl₂

4-chloro-3-ethylcyclohexanol

100. **(3)** Charge of electron