CAREER INSTITUTE PVT.LTD. NEET 2023-24
 Answer Key Version - Q (PCB NEET 2023-24)

Physics					Chemistry				
Sec. A	11. 4	22. 3	33. 3	43. 1	Sec. A	61. 4	72. 1	83. 2	93. 4
01. 2	12. 1	23. 4	34. 1	44. 1	51. 3	62. 1	73. 4	84. 3	94. 3
02. 1	13. 3	24. 4	35. 2	45. 2	52. 2	63. 4	74. 4	85. 3	95. 3
03. 2	14. 1	25. 3	Sec. B	46. 1	53. 2	64. 4	75. 4	Sec. B	96. 3
04. 1	15. 3	26. 1	36. 1	147. 2^{99}	9 54.3	65. 2 ®	76. 4	86. 1	97. 1
05. 1	16. 2	27. 2	37. 4	48. 1	55. 1	66. 2	77. 3	87. 2	98. 4
06. 2	17. 3	28. 3	38. 1	49. 1	56. 1	67. 2	78. 3	88. 3	99. 3
07. 3	18. 2	29. 2	39. 1	50. 2	57. 4	68. 4	79. 1	89. 3	100. 3
08. 1	19. 1	30. 2	40. 3		58. 3	69. 2	80. 4	90. 3	
09. 4	20. 2	31. 3	41. 3		59. 1	70. 1	81. 4	91. 1	
10. 2	21. 3	32. 3	42. 3		60. 3	71. 4	82. 2	92. 4	
Biology									
Part-I	110. 4	121.4	132. 4	142. 4	Part-II	160. 2	171. 3	182. 1	192. 1
Sec.A	111. 1	122. 4	133. 1	143. 4	Sec.A	161. 2	172. 2	183. 3	193. 4
101. 4	112. 4	123. 2	134. 2	144. 3	151. 1	162.3	173. 3	184. 1	194. 1
102. 4	113. 4	124. 1	135. 4	145. 2	152. 2	163. 4	174. 1	185. 4	195. 3
103. 3	114. 3	125. 4	Sec.B	146. 2	153. 3	164. 3	175. 2	Sec. B	196. 2
104. 4	115. 3	126. 1	136. 1	147. 4	154. 3	165. 3	176. 4	186. 3	197. 2
105. 2	116. 4	127. 3	137. 4	148.4	155. 3	166. 3	177. 3	187. 2	198. 3
106. 4	117. 2	128. 3	138. 4	149. 3	156. 2	167. 3	178. 1	188. 3	199. 2
107. 2	118. 4	129. 2	139. 4	150. 4	157. 2	168. 4	179. 3	189. 4	200. 2
108. 4	119. 4	130. 1	140.3		158. 4	169.4	180. 4	190. 1	
109. 2	120. 2	131.3	141. 4		159. 3	170.2	181. 2	191. 3	

PHYSICS

SECTION - A (35 Questions)

1. (2) $a=b t$
$\frac{\mathrm{dv}}{\mathrm{dt}}=b t$
$\int_{u}^{v} d v=\int_{0}^{t} b t d t$
$\mathrm{V}=\mathrm{u}+\frac{b t^{2}}{2}$
$\left[\mathrm{V}=\mathrm{u}+\frac{b t^{2}}{2}\right]$
2. (1) $W=\vec{F} \cdot \vec{s}=(-2 \hat{i}+15 \hat{j}+6 \hat{k}) \cdot 10 \hat{j}$ $=150 \mathrm{~J}$.
3. (2)

$$
x_{c m}=\frac{\int d m x}{\int d m}=\frac{\int\left(\lambda_{0} x d x\right) x}{\int \lambda d x}=\frac{\int_{0}^{L} \lambda_{0} x^{2} d x}{\int_{0}^{L} \lambda_{0} x d x}=\frac{2 L}{3} .
$$

4. (1) Apply system equation

$$
\begin{aligned}
& \frac{\mathrm{m}}{4} \mathrm{~g}=\frac{3 \mathrm{~m}}{4} \mathrm{~g} \times \mu \\
& \Rightarrow \mu=\frac{1}{3}=0.33
\end{aligned}
$$

10. (2) $X_{C M}=\frac{0 \times m+m \times a+m \times \frac{a}{2}}{m+m+m}=\frac{a}{2}$,
$Y_{C M}^{\mathrm{PY}}=\frac{0 \times m+0 \times m+m \times \frac{a \sqrt{3}}{2}}{m+m+m}=\frac{a \sqrt{3}}{6}$,
11. (4) $a=\frac{\mathrm{S}^{2}}{\mathrm{t}^{4}}=\frac{(\text { metre })^{2}}{(\text { second })^{4}}=\mathrm{m}^{2} \mathrm{~s}^{4}$
12. (1) KE. $=\frac{1}{2} \mathrm{mV}^{2}$
$\left.[K E]=M L^{2} \mathrm{~T}^{-2}\right]$
If unit of M and L are doubled
Then unit of K.E.
$\begin{aligned} \text { K.E. } & =\left[(2 \mathrm{M})(2 \mathrm{~L})^{2} \mathrm{~T}^{-2}\right] \\ & =8\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]\end{aligned}$
unit of K.E. is 8 times.
13. (3) $a=\frac{(n m-m)}{n m+m} g$

$$
=\frac{(n-1)}{(n+1)} g
$$

$a_{1}=a_{2}=a$
$a_{c m}=\frac{n m a_{1}-m a_{2}}{(n m+m)}=\frac{(n-1)}{(n+1)} \times a$

14. (1) Velocity can't change its value suddenly.
15. (3) $a=\frac{F}{M}$

By FBD
$\mathrm{T}=\frac{4 M}{5} \times a=\frac{4 M}{5} \times \frac{F}{M}=\frac{4 F}{5} \Rightarrow \mathrm{~T}=4 \mathrm{~N}$.
16. (2)

For leaving contact $\mathrm{N}=0$
$\Rightarrow \frac{m v^{2}}{R}=m g \Rightarrow v=\sqrt{g R}$.
17. (3) use $\mathrm{m}_{1} \mathrm{v}_{1}=\mathrm{m}_{2} \mathrm{v}_{2}=\mathrm{P}$
K.E. $=\frac{1}{2} \mathrm{mv}_{1}{ }^{2}+\frac{1}{2} \mathrm{~m}_{2} \mathrm{v}_{2}{ }^{2}$

Since 1999
$=\frac{1}{2} m_{1}\left(\frac{P}{m_{1}}\right)^{2}+\frac{1}{2} m_{2}\left(\frac{P}{m_{2}}\right)^{2}$
$=\frac{1}{2} \frac{\mathrm{P}^{2}\left(\mathrm{~m}_{2}+\mathrm{m}_{1}\right)}{\mathrm{m}_{1} \mathrm{~m}_{2}}$.
18. (2) $x=6 t$
$y=8 t-5 t^{2}$
$\frac{d x}{d t}=6$
$\frac{d y}{d t}=8-10 t$
at $t=0$
$\mathrm{V}_{\mathrm{x}}=6 \mathrm{~m} / \mathrm{sec}$
$\mathrm{V}_{\mathrm{y}}=8 \mathrm{~m} / \mathrm{sec}$
$V=\sqrt{V_{y}{ }^{2}+V_{x}{ }^{2}}=\sqrt{8^{2}+6^{2}}=10 \mathrm{~m} / \mathrm{sec}$
19. (1)

as $v=\sqrt{R g \tan \theta}$
$h=\frac{v^{2} b}{R g}$
20. (2) $\frac{H}{R}=\frac{\tan \theta}{4}$
$\theta=45^{\circ} \& \mathrm{R}=36 \mathrm{~m}$
$\therefore \mathrm{H}=9 \mathrm{~m}$.
21. (3)

after collision
So angle between velocity vectors is 90°
22. (3) $a=\frac{60}{10+20+30}=1 \mathrm{~ms}^{-2}$

$\Rightarrow T_{2}=\left(m_{1}+m_{2}\right) a=(10+20) \times 1=30 \mathrm{~N}$.
23. (4) It can be observed that component of acceleration perpendicular to velocity is $a_{c}=5 \mathrm{~m} / \mathrm{s}^{2}$ \therefore radius $=\frac{v^{2}}{a_{c}}=\frac{25}{5}=5$ metre.
24. (4)
25. (3)Let v be the speed of B at lowermost position, the speed of A at lowermost position is 2 v .
From conservation of energy
$\frac{1}{2} \mathrm{~m}(2 \mathrm{v})^{2}+\frac{1}{2} \mathrm{mv}^{2}=\mathrm{mg}(2 l)+\mathrm{mg} l$.
Solving we get $\mathrm{v}=\sqrt{\frac{6}{5} g l}$.
26. (1) As the slope of tangent decreases, velocity also decreases with time.
after time distance becomes constant i.e particle stops.
27. (2)

The length of string AB is constant.
\Rightarrow speed A and B along the string are same $u \sin \theta=V$
$u \sin \theta=V$
$\mathrm{u}=\frac{\mathrm{V}}{\sin \theta}$
28. (3) $[\mathrm{Y}]=\left[\mathrm{F}^{\mathrm{a}} \mathrm{A}^{\mathrm{b}} \mathrm{D}^{\mathrm{c}}\right]$
$\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]=\left[\left(\mathrm{MLT}^{-2}\right)^{\mathrm{a}}\left(\mathrm{L}^{2}\right)^{\mathrm{b}}\left(\mathrm{ML}^{-3}\right)^{\mathrm{c}}\right]$
equating power of M, L and T
$1=\mathrm{a}+\mathrm{c}$,
$-1=a+2 b-3 c$
$-2=-2 a$ $\mathrm{a}=1, \quad \mathrm{c}=0$
$\mathrm{b}=-1$
$[\mathrm{Y}]=\mathrm{FA}^{-1} \mathrm{D}^{0}$.
29. (2) $[\mathrm{h}]=\mathrm{ML}^{2} \mathrm{~T}^{-1}$
$\left[V_{s}\right]=\frac{[W]}{[Q]}=\frac{M L^{2} T^{-2}}{A T}=M L^{2} T^{-3} A^{-1}$
$[\phi]=M L^{2} T^{-2}$
$[\mathrm{P}]=\mathrm{MLT}^{-1}$.
30. (2)
31. (3) $\mathrm{W}_{\mathrm{G}}-\mathrm{W}_{\mathrm{f}}=0 \Rightarrow m g h=\mu m g l$
$h=\mu l$
$h=(0.2) l$
$\Rightarrow l=\frac{1.5}{0.2}$
$l=7.5 \mathrm{~m}=(3+3+1.5) \mathrm{m}$.
32. (3)

$\mathrm{V}_{2}{ }^{2}=\mathrm{V}_{3}{ }^{2}+2 \mathrm{~g} \frac{\mathrm{~h}}{2}$
$\Rightarrow(10)^{2}=2 \times 10 \times \frac{\mathrm{h}}{2}$
Since 1999
$\Rightarrow \mathrm{h}=\frac{100}{10}=10 \mathrm{~m}$
33. (3) It can be observed that power delivered to particle by force F is -
$\mathrm{P}=\mathrm{Fv}=\mathrm{K}$.
The power is constant. Hence work done by force in time t is -
$\Delta \mathrm{W}=\mathrm{Pt}=\mathrm{Kt}$
34. (1) $\mathrm{W}_{\mathrm{S}}+\mathrm{W}_{\mathrm{f}}=\Delta \mathrm{K}$
$-\Delta U+W_{f}=-K_{i}$
$-\mathrm{U}_{\mathrm{f}}-\mu \mathrm{mg} x=-\mathrm{K}_{\mathrm{i}}$
$\frac{1}{2} \mathrm{~K} x^{2}+\mu \mathrm{mg} x=\frac{1}{2} \mathrm{mu}^{2}$
$100 x^{2}+2(0.1)(50)(10) x=50 \times 4$
$x^{2}+x-2=0$
$x=1 \mathrm{~m}$.
35. (2)

$X_{c o m}=\frac{m \times 0+2 m \times(3 a)}{m+2 m}=2 a$.

SECTION - B (Attempt Any 10 Questions)

36. (1) Solving from the frame of truck

$\mathrm{f} \leq \mu \mathrm{mg}=6 \Rightarrow \mathrm{f}=5 \mathrm{~N}$.
37. (4)

for motion to start
$\mathrm{F} \geq 0.2 \times 100 \mathrm{~g}+0.3 \times 300 \mathrm{~g}=1100 \mathrm{~N}$
$\mathrm{F}_{\text {min }}=1100 \mathrm{~N}$.
38. (1) $N=m g+Q \cos \theta$
frictional force $\mathrm{f}=\mu(\mathrm{mg}+\mathrm{Q} \cos \theta)$
$P+Q \sin \theta=\mu(m g+Q \cos \theta)$
$\mu=\frac{P+Q \sin \theta}{m g+Q \cos \theta}$
39. (1) From given conditions :
$\mathrm{V}_{\mathrm{A}}=\mathrm{V}_{\mathrm{B}} \cos 37^{0}=15 \cdot \frac{4}{5}=12 \mathrm{~m} / \mathrm{sec}$.
\therefore time of flight of $\mathrm{A}(\mathrm{t})=\sqrt{\frac{2 \times 20}{10}}=2 \mathrm{sec}$.
\Rightarrow Range $=\mathrm{V}_{\mathrm{A}} \mathrm{t}=24 \mathrm{~m}$.
40. (3)
41. (3) Density, $\rho=\frac{m}{V}$
$\Rightarrow\left|\frac{\Delta \rho}{\rho}\right|_{\max }=\frac{m}{\pi r^{2} l}=\left|\frac{\Delta m}{m}\right|+2\left|\frac{\Delta r}{r}\right|+\left|\frac{\Delta l}{l}\right|$
$=\frac{0.01}{0.4}+\frac{2(0.03)}{6}+\frac{0.04}{8}$
$\%$ error in density $=\left(\frac{\Delta \rho}{\rho}\right) \times 100 \%$
$=\left(\frac{1}{0.4}+\frac{6}{6}+\frac{4}{8}\right) \%=(2.5+1+0.5) \%=4 \%$
42. (3) $\mathrm{MSR}=2.5 \mathrm{~mm}$

CSR $=45 \times \frac{0.5}{50} \mathrm{~mm}=0.45 \mathrm{~mm}$
Diameter reading $=$ Reading of crew gauge
$=2.5+0.45-(-0.03)=2.98 \mathrm{~mm}$.
43. (1) $\frac{d x}{d t}=$ slope ≥ 0 always increasing
$\frac{d x}{d t}<0 ;$ and at $t \rightarrow \infty \frac{d x}{d t} \rightarrow 0$
$\frac{d x}{d t}>0$ for first half $\frac{d x}{d t}<0$ for second half.
$\frac{d x}{d t}=$ constant
44. (1) Work done by a force is positive if displacement is in direction of force and work done by a force is negative if displacement is in direction opposite to that of force.
45. (2) $15 \mathrm{~min}=1 / 4 \mathrm{hr}$.

$t=\frac{d}{V_{y}}$
$\Rightarrow \frac{1}{4}=\frac{1}{\sqrt{\mathrm{~V}_{\mathrm{MR}}^{2}-\mathrm{V}_{\mathrm{R}}^{2}}}=\frac{1}{4}=\frac{1}{\sqrt{5^{2}-\mathrm{V}_{\mathrm{R}}^{2}}}$
$\Rightarrow \mathrm{V}_{\mathrm{R}}=3 \mathrm{~km} / \mathrm{h}$
46. (1) As block is shifted slowly $\Delta K . E .=0$
$\therefore W_{g}+W_{f}+W_{F}=0$
Work done:
$=\mathrm{Mgh}_{1}+\mathrm{Mgh}_{2}+\mathrm{Mgh}_{3}+\mu_{1} \mathrm{Mg}_{1}+\mu_{2} \mathrm{Mg}_{2}+$
$\mu_{3} \mathrm{Mgl}_{3}$
$=\operatorname{Mg}\left(\mathrm{h}_{1}+\mathrm{h}_{2}+\mathrm{h}_{3}\right)+\operatorname{Mg}\left(\mu_{1} l_{1}+\mu_{2} l_{2}+\mu_{3} l_{3}\right)$
$=\operatorname{Mg}(8+0.2+0.4+0.4)=90 \mathrm{~J}$.
47. (2) $W=\int \vec{F} \cdot d \vec{s}=\int(3 t \hat{i}+5 \hat{j}) \cdot(4 t d \hat{t} \mid \hat{i}) 1999$

$$
=\int_{0}^{2} 12 t^{2} d t=\frac{12\left[t^{3}\right]_{0}^{2}}{3}=32 J
$$

48. (1) $m \vec{V}_{m}=-M \vec{V}_{b}$
$m\left(\vec{V}_{r e l}+\vec{V}_{b}\right)=-M \vec{V}_{b}$
$\vec{V}_{b}=\frac{-m \vec{V}_{r e l}}{M+m}$
$\Rightarrow \vec{V}_{b}$ will be opposite to $V_{\text {rel }}$.
49.

(1) $\Delta U=\frac{1}{2} \frac{m_{1} m_{2}}{\left(m_{1}+m_{2}\right)}\left(V_{1}-V_{2}\right)^{2}=\frac{100}{3}$
$\left(V_{1}-V_{2}\right)^{2} \times \frac{2 m \cdot m}{2(m+2 m)}=\frac{100}{3}$
putting $m=1 \mathrm{~kg}$
$\left(\mathrm{V}_{1}-\mathrm{V}_{2}\right)=10 \mathrm{~m} / \mathrm{sec}$.
50. (2) Case (1) : $a=\frac{F}{3 m}$
$N_{1}=m \times a$
Similarly in case (2)
$N_{2}=2 m \times a \Rightarrow \frac{N_{1}}{N_{2}}=\frac{1}{2}$.

CHEMISTRY

SECTION - A (35 Questions)

51. (3)

Wt . of solvent $=\mathrm{Wt}$. of solution -Wt . of solute

$$
\begin{aligned}
& =[1000 \times 1.02-20.5 \times 60]=897 \mathrm{~g} . \\
& \begin{aligned}
\mathrm{m}=\frac{\text { Moles of } \mathrm{CH}_{3} \mathrm{COOH}}{\text { Wt. of solvent in } \mathrm{kg}} & =\frac{2.05 \times 1000}{897} \\
& =2.285
\end{aligned}
\end{aligned}
$$

52. (2)

Mol. wt. of $\mathrm{H}_{3} \mathrm{PO}_{4}$ is 98 and change in its valence $=1$.

Eq. wt. of $\mathrm{H}_{3} \mathrm{PO}_{4}=\frac{\text { Mol. wt. }}{\text { Change in valency }}$

$$
=98 / 1=98
$$

53. (2)

5, 6-Diethyl-3-methyldec-4-ene
54. (3)
$\mathrm{NO}_{2}{ }^{+}, \mathrm{AlCl}_{3}, \mathrm{SO}_{3}$ and $\mathrm{CH}_{3} \stackrel{+}{\mathrm{C}}=\mathrm{O}$ are electrophiles.
55. (1)

Three, that is, d-tartaric acid, 1-tartaric acid and meso-tartaric acid.
56. (1)
$2 \mathrm{NaHCO}_{3} \longrightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$
2 mol of NaHCO_{3} on complete decomposition gives 1 mol of $\mathrm{Na}_{2} \mathrm{CO}_{3}$.
So, 0.2 mol of NaHCO_{3} on complete decomposition gives 0.1 mol of $\mathrm{Na}_{2} \mathrm{CO}_{3}^{-}$.
57. (4)

According to stoichiometry, they should react as follows:
$4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$4 \mathrm{~mol} \quad 5 \mathrm{~mol} \quad 4 \mathrm{~mol} \quad 6 \mathrm{~mol}$
$0.8 \mathrm{~mol} \quad 1 \mathrm{~mol} \quad 0.8 \mathrm{~mol} 1.2 \mathrm{~mol}$
In this reaction 1 mole of O_{2} and 0.8 mole of NH_{3} are consumed. There by indicating complete consumption of O_{2}.
58. (3) Order of stability of carbanions is $1^{\circ}>2^{\circ}>3^{\circ}$.
59. (1) II $>$ I $>$ III
60. (3) As both the carbon atoms of each of the three double bonds are differently substituted, therfore, $2^{3}=8$ geometrical isomers are possible.
61. (4) Number of moles of oxygen $=2 \times$ number of moles of given compounds
62. (1) 1
63. (4) If both assertion and reason are false.
64. (4) E^{+}attacks on ring which has more e^{-}density.
65. (2) 1 is staggered and 2 is eclipsed.
66. (2) 2 s
67. (2) As values of m is from -1 to +1 including zero.
68. (4) All the above
69. (2) Higher are number of $\alpha-H$, more the hyperconjugating structures, more the stability of the compound.
70. (1) 1,2 and 3
71. (4) Helium nuclei, which impinged on a metal foil and got scattered.
72. (1) 1
73. (4)

74. (4) (A) is elimination, (B) is substitution and (C) is addition reaction.
75. (4) (1)-(iv), (2)-(iii), (3)-(ii), (4)-(i)
76. (4)

$$
\mathrm{X}_{3}=\frac{\mathrm{X}_{1} \mathrm{X}_{2}}{\mathrm{X}_{1}+\mathrm{X}_{2}}
$$

77. (3) (1)-(iv), (2)-(ii), (3)-(i), (4)-(iii)
78. (3) Four primary amines are possible. These are: $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{CH}_{2} \mathrm{NH}_{2}$, $\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CH}_{2} \mathrm{CH}_{3}$ and $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CNH}_{2}$.
79. (1) 9σ and 9π
80. (4) Statement-I is incorrect and Statement-II is correct
81. (4) (1)-(iv), (2)-(iii), (3)-(ii), (4)-(i)
82. (2) 3,3 and 3 respectively
83. (2) $-\mathrm{COOH},-\mathrm{SO}_{3} \mathrm{H},-\mathrm{CONH}_{2},-\mathrm{CHO}$
84. (3) (A) \rightarrow (iii), (B) \rightarrow (iv), (C) \rightarrow (ii), (D) \rightarrow (i)
85. (3) Three, that is, $\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}, \mathrm{CH}_{3}-\mathrm{O}-$ $\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{CH}_{3}$.

SECTION - B (Attempt Any 10 Questions)

86. (1)

As halogens are most electronegative so the configuration is $\mathrm{ns}^{2} \mathrm{np}^{5}$.
87. (2)

Carbanions are stabilised by electron withdrawing groups. - NO_{2} is stronger electron withdrawing group as compared to - CHO. At ortho-position, the effect is more pronounced.
88. (3)
$-\mathrm{NO}_{2}$ group is meta-directing, thus will stabilize a electrophile at m-position.
89. (3)

$$
\lambda=\frac{\mathrm{h}}{\sqrt{2 \mathrm{~m}(\mathrm{KE})}}=0.3328 \mathrm{~nm}
$$

90. (3)

As maximum number of electrons in any orbit, suborbit or orbital is decided by Pauli's law.
91. (1)

Non-superimposable on its mirror image.
92. (4)

The two stereoisomers are not mirror images and hence, the diastereomers.
93. (4)

Six isomers are

94. (3)

2 and 3
95. (3)

96. (3)

Statement-I is correct but Statement - II is incorrect. Zeros at the end or right of a number are significant provided they are on the right side of the decimal point.
97. (1)

Molecular weight of the metal chloride
$=\frac{0.72 \times 22400}{100}=161.28 \mathrm{~g}$
Weight of chlorine in metal chloride
$=\frac{65.5 \times 161.28}{100}=105.64 \mathrm{~g}$
So, Mole atoms of chlorine $=\frac{105.64}{35.5}=3$
Hence, metal chloride is MCl_{3}
98. (4)

4-chloro-3-ethylcyclohexanol
99. (3)

100. (3)

Charge of electron

