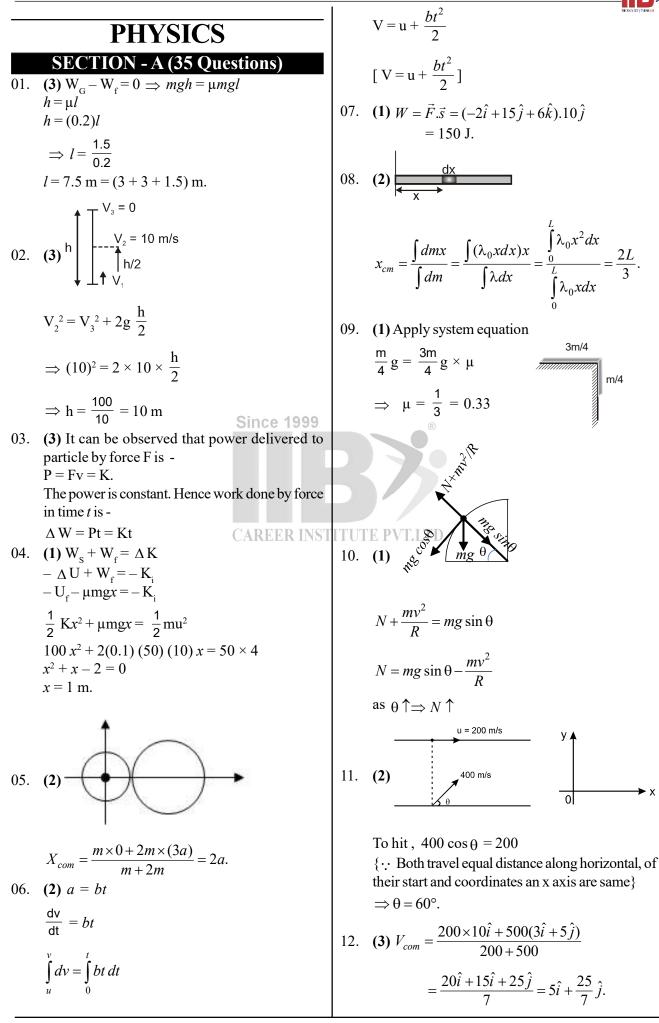


PCB




Mark 720

## Group PRE FINAL ROUND -01

Date : 17/03/2024 Time: 3:20 Hours

# Answer Key Version - P (PCB NEET 2023-24)

| Physics |        |        |                    |                  | Chemistry |        |        |        |        |
|---------|--------|--------|--------------------|------------------|-----------|--------|--------|--------|--------|
| Sec. A  | 11. 2  | 22. 3  | 33. 3              | 43. 1            | Sec. A    | 61. 1  | 72. 2  | 83. 3  | 93. 3  |
| 01. 3   | 12. 3  | 23. 2  | 34. 2              | 44. 1            | 51. 4     | 62. 4  | 73. 4  | 84. 1  | 94. 3  |
| 02. 3   | 13. 1  | 24. 1  | 35. 2              | 45. 3            | 52. 2     | 63. 3  | 74. 2  | 85. 4  | 95. 3  |
| 03. 3   | 14. 4  | 25. 2  | Sec. B             | 46. 3            | 53. 2     | 64. 1  | 75. 1  | Sec. B | 96. 1  |
| 04. 1   | 15. 2  | 26. 3  | 36. 1 <sup>S</sup> | in47.e 1399      | 9 54. 3   | 65. 3® | 76. 4  | 86. 3  | 97. 4  |
| 05. 2   | 16. 4  | 27. 3  | 37. 2              | 48. 1            | 55. 3     | 66. 4  | 77. 1  | 87. 1  | 98. 4  |
| 06. 2   | 17. 1  | 28. 4  | 38. 1              | 49. 1            | 56. 3     | 67. 1  | 78. 4  | 88. 4  | 99. 3  |
| 07. 1   | 18. 3  | 29. 4  | 39. 1 C            | 50. 2<br>AREER I | 57. 2     | 68. 4  | 79. 4  | 89. 3  | 100. 3 |
| 08. 2   | 19. 1  | 30. 3  | 40. 2              |                  | 58. 2     | 69. 4  | 80. 4  | 90. 3  |        |
| 09. 1   | 20. 3  | 31. 1  | 41. 1              |                  | 59. 3     | 70. 2  | 81. 4  | 91. 1  |        |
| 10. 1   | 21. 2  | 32. 2  | 42. 4              |                  | 60. 1     | 71. 2  | 82. 3  | 92. 2  |        |
| Biology |        |        |                    |                  |           |        |        |        |        |
| Part-I  | 110. 2 | 121. 4 | 132. 3             | 142. 4           | Part-II   | 160. 3 | 171. 3 | 182. 3 | 192. 2 |
| Sec.A   | 111. 4 | 122. 2 | 133. 3             | 143. 4           | Sec.A     | 161. 2 | 172. 3 | 183. 1 | 193. 3 |
| 101. 3  | 112. 2 | 123. 4 | 134. 2             | 144. 4           | 151. 2    | 162. 2 | 173. 4 | 184. 3 | 194. 4 |
| 102. 4  | 113. 4 | 124. 4 | 135. 1             | 145. 3           | 152. 1    | 163. 4 | 174. 4 | 185. 4 | 195. 1 |
| 103. 1  | 114. 2 | 125. 2 | Sec.B              | 146. 4           | 153. 3    | 164. 3 | 175.2  | Sec. B | 196. 3 |
| 104. 2  | 115. 4 | 126. 4 | 136. 2             | 147.4            | 154. 1    | 165. 2 | 176. 3 | 186. 2 | 197. 1 |
| 105. 4  | 116. 1 | 127. 4 | 137. 4             | 148. 4           | 155. 4    | 166. 2 | 177. 2 | 187. 2 | 198. 4 |
| 106. 4  | 117. 4 | 128. 2 | 138. 4             | 149. 3           | 156. 1    | 167. 3 | 178. 3 | 188. 3 | 199. 1 |
| 107. 4  | 118. 4 | 129. 1 | 139. 3             | 150. 2           | 157. 2    | 168. 4 | 179. 1 | 189. 2 | 200. 3 |
| 108. 3  | 119. 3 | 130. 4 | 140. 4             |                  | 158. 3    | 169. 3 | 180. 2 | 190. 2 |        |
| 109. 4  | 120. 3 | 131. 1 | 141. 1             |                  | 159. 3    | 170. 3 | 181. 4 | 191. 3 |        |



2

Ρ

► x

**NEET 2023-24**  
**P**  
**I.**  
**I.** (1) 
$$F = \sqrt{Skg} = \sqrt{S \times 6.4 \times 10} = 17.9 \text{ m/s}}$$
  
**I.** (4)  $\Delta V = V_2 = V_1$   
 $= 0$   
 $\Delta V = V_2 = V_1$   
 $|\Delta V| = \sqrt{V_2^2 + V_1^2 + 2V_1 V_2 \cos 120^4}}$   
 $= \sqrt{V^2 + V^2 + 2V^2 (-\frac{1}{2})}$   
 $|\Delta V| = V$   
**I.** (2)  $X_{CM} = \frac{0 \times m + m \times a + m \times \frac{a}{2}}{m + m + m} = \frac{a}{2}$ ,  
 $Y_{CM} = \frac{0 \times m + 0 \times m + m \times \frac{a}{2}}{m + m + m} = \frac{a}{6}$ ,  
**I.** (2)  $X_{CM} = \frac{0 \times m + 0 \times m + m \times \frac{a}{2}}{m + m + m} = \frac{a}{6}$ ,  
**I.** (3)  $a = \frac{1}{M}$   
 $= \frac{(m + 1)^2}{(m + 1)^2} \text{ f.}$   
**I.** (1) (KE =  $\frac{1}{2} \text{ mV}^2$   
**I.** (1)  $KE = \frac{1}{2} \text{ mV}^2$   
**I.** (1)  $(1) \text{ Vecourd} = \frac{1}{(n+1)^2}$   
 $a_{cm} = \frac{(n-1)^2}{(n+1)^2}$   
 $a_{cm} = \frac{(n-1)^2}{(n+1)^2}$   
**I.** (1) (1) Vecourd and thange its value suddenly.  
**I.** (2) (3)  $a = \frac{F_M}{\frac{4485}{B} + FBD}$   
**I.** (1) Vecourd vant change its value suddenly.  
**I.** (3)  $a = \frac{60}{(n+1)^2} = \frac{1}{2} \frac{1}{2} \frac{1}{10} \frac{1}{10} = \frac{1}{10} \frac{1}{2} \frac{1}{10} = 1 \text{ ms}^2$   
**I.** (3)  $a = \frac{60}{(1+20+30)} = 1 \text{ ms}^2$   
**I.** (3)  $a = \frac{60}{(1+20+30)} = 1 \text{ ms}^2$   
**I.** (3)  $a = \frac{60}{(1+20+30)} = 1 \text{ ms}^2$ 

3

 $\Rightarrow T_2 = (m_1 + m_2) a = (10 + 20) \times 1 = 30 \text{ N}.$ 28. (4) It can be observed that component of acceleration perpendicular to velocity is  $a_c = 5 \text{m/s}^2$  $\therefore$  radius =  $\frac{v^2}{a_c} = \frac{25}{5} = 5$  metre. 29. (4) 30. (3)Let v be the speed of B at lowermost position, the speed of A at lowermost position is 2v. 3 From conservation of energy  $\frac{1}{2}$  m (2v)<sup>2</sup> +  $\frac{1}{2}$  mv<sup>2</sup> = mg (2*l*) + mg*l*. Solving we get  $v = \sqrt{\frac{6}{5}gl}$ . 3 31. (1) As the slope of tangent decreases, velocity also decreases with time. after time distance becomes constant i.e particle stops.

Since 1999

AREER INST

32. (2) 
$$(2)$$
  $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2)$   $(2$ 

The length of string AB is constant.

 $\Rightarrow$  speed A and B along the string are same u sin  $\theta = V$ u sin  $\theta = V$ 

$$u = \frac{V}{\sin \theta}$$

33. (3)  $[Y] = [F^{a} A^{b} D^{c}]$   $[ML^{-1}T^{-2}] = [(MLT^{-2})^{a} (L^{2})^{b} (ML^{-3})^{c}]$ equating power of M, L and T  $1 = a + c, \qquad -1 = a + 2b - 3c$   $-2 = -2a \qquad a = 1, \qquad c = 0$  b = -1  $[Y] = F A^{-1} D^{0}.$ 34. (2)  $[h] = ML^{2}T^{-1}$ 

$$[V_s] = \frac{[W]}{[Q]} = \frac{ML^2T^{-2}}{AT} = ML^2T^{-3}A^{-1}$$
$$[\phi] = ML^2T^{-2}$$
$$[P] = MLT^{-1}.$$

 $[P] = MLT^{2}.$ 35. (2) **SECTION - B (Attempt Any 10 Questions)** 36. (1) As block is shifted slowly  $\Delta K.E. = 0$ 

$$\therefore W_{g} + W_{f} + W_{F} = 0$$
Work done :  
= Mgh\_{1} + Mgh\_{2} + Mgh\_{3} + \mu\_{1} Mgl\_{1} + \mu\_{2} Mgl\_{2} + \mu\_{3} Mgl\_{3}
= Mg (h\_{1} + h\_{2} + h\_{3}) + Mg ( $\mu_{1}l_{1} + \mu_{2}l_{2} + \mu_{3}l_{3}$ )  
= Mg (8 + 0.2 + 0.4 + 0.4) = 90 J.  
37. (2)  $W = \int \vec{F} \cdot d\vec{s} = \int (3t\hat{i} + 5\hat{j}).(4t \ dt \ \hat{i})$   
=  $\int_{0}^{2} 12t^{2}dt = \frac{12[t^{3}]_{0}^{2}}{3} = 32J.$   
38. (1)  $m\vec{V}_{m} = -M\vec{V}_{b}$   
 $m(\vec{V}_{rel} + \vec{V}_{b}) = -M\vec{V}_{b}$   
 $\vec{V}_{b} = \frac{-m\vec{V}_{rel}}{M + m}$   
 $\Rightarrow \vec{V}_{b}$  will be opposite to  $V_{rel}$ .  
39. (1)  $\Delta U = \frac{1}{2} \frac{m_{1}m_{2}}{(m_{1} + m_{2})} (V_{1} - V_{2})^{2} = \frac{100}{3}$   
 $(V_{1} - V_{2})^{2} \times \frac{2m.m}{2(m + 2m)} = \frac{100}{3}$   
putting m = 1 kg  
 $(V_{1} - V_{2}) = 10 \text{ m/sec}.$   
40. (2) Case (1) :  $a = \frac{F}{3m}$   
 $N_{1} = m \times a$   
Similarly in case (2)  
 $N_{2} = 2m \times a \Rightarrow \frac{N_{1}}{N_{2}} = \frac{1}{2}.$   
41. (1) Solving from the frame of truck  
 $\frac{F_{precedo}}{= 5 \times 1} = \frac{F}{5 \times 1} = \frac{F}{5} = \frac{1}{5} + \frac{F}{5} = \frac{1}{5} + \frac{F}{5} = \frac{1}{5} + \frac{F}{5} = \frac{1}{5} + \frac{F}{5} = \frac{F}{5} + \frac{F}{5} + \frac{F}{5} = \frac{F}{5} + \frac{F}{5} = \frac{F}{5} + \frac{F}{5} + \frac{F}{5} = \frac{F}{5} + \frac{F}{5}$ 

 $f \le \mu mg = 6 \implies f = 5N.$ 

- 42. (4)  $\begin{array}{c} 0.2 \times 100 \text{ g} \\ 0.3 \times 300 \text{ g} \end{array}$  B F for motion to start  $F \ge 0.2 \times 100 \text{ g} + 0.3 \times 300 \text{ g} = 1100 \text{ N}$  $F_{min} = 1100 \text{ N}.$
- 43. (1)  $N = mg + Q \cos \theta$ frictional force  $f = \mu(mg + Q \cos \theta)$  $P + Q \sin \theta = \mu(mg + Q \cos \theta)$

44.

45.

46.

47.

48.

49.

50.

| $P + O \sin \theta$                                                                                                                                                                              | $\Rightarrow$ V <sub>R</sub> = 3 km/h                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| $\mu = \frac{P + Q \sin \theta}{mg + Q \cos \theta}$                                                                                                                                             |                                                                                                                 |
| (1) From given conditions :                                                                                                                                                                      |                                                                                                                 |
| $V_{\rm A} = V_{\rm B} \cos 37^{\circ} = 15.\frac{4}{5} = 12 \text{ m/sec.}$                                                                                                                     | <b>SECTION - A (35 Questions)</b><br>51. (4)<br>(1) (iv) (2) (ii) (4) (i)                                       |
| : time of flight of A (t) = $\sqrt{\frac{2 \times 20}{10}} = 2$ sec.                                                                                                                             | (1)-(iv), (2)-(iii), (3)-(ii), (4)-(i)<br>52. (2)<br>3, 3 and 3 respectively                                    |
| $\Rightarrow \text{Range} = V_A t = 24 \text{ m.}$ (3)                                                                                                                                           | 53. (2)<br>-COOH, -SO <sub>3</sub> H, -CONH <sub>2</sub> , -CHO<br>54. (3)                                      |
| (3) Density, $\rho = \frac{m}{V}$                                                                                                                                                                | $(A) \rightarrow (iii), (B) \rightarrow (iv), (C) \rightarrow (ii), (D) \rightarrow (i)$<br>55. (3)             |
| $\Rightarrow \left  \frac{\Delta \rho}{\rho} \right _{\max} = \frac{m}{\pi r^2 l} = \left  \frac{\Delta m}{m} \right  + 2 \left  \frac{\Delta r}{r} \right  + \left  \frac{\Delta l}{l} \right $ | Three, that is, $CH_3OCH_2CH_2CH_3$ , $CH_3-O-CH(CH_3)_2$ and $CH_3CH_2OCH_2CH_3$ .<br>56. (3)                  |
| $=\frac{0.01}{0.4}+\frac{2(0.03)}{6}+\frac{0.04}{8}$                                                                                                                                             | Wt. of solvent = Wt. of solution – Wt. of solute<br>= $[1000 \times 1.02 - 20.5 \times 60] = 897$ g.            |
| % error in density = $\left(\frac{\Delta\rho}{\rho}\right) \times 100\%$                                                                                                                         | $m = \frac{\text{Moles of CH}_{3}\text{COOH}}{\text{Wt. of solvent in kg}} = \frac{2.05 \times 1000}{897}$      |
| $= \left(\frac{1}{0.4} + \frac{6}{6} + \frac{4}{8}\right)\% = (2.5 + 1 + 0.5)\% = 4\%$                                                                                                           | = 2.285 57. (2)<br>Mol. wt. of H <sub>3</sub> PO <sub>4</sub> is 98 and change in its valence                   |
| (3) $MSR = 2.5 \text{ mm}$                                                                                                                                                                       | = 1.                                                                                                            |
| $CSR = 45 \times \frac{0.5}{50} mm = 0.45 mm$                                                                                                                                                    | Eq. wt. of $H_3PO_4 = \frac{Mol. wt.}{Change in valency}$                                                       |
| Diameter reading = Reading of crew gauge INST<br>= $2.5 + 0.45 - (-0.03) = 2.98$ mm.                                                                                                             | TUTE PVT.LTD. $= 98/1 = 98$<br>58. (2)                                                                          |
| (1) $\frac{dx}{dt}$ = slope $\ge 0$ always increasing                                                                                                                                            | 5 4 3 1                                                                                                         |
| $\frac{dx}{dt} < 0$ ; and at $t \to \infty \frac{dx}{dt} \to 0$                                                                                                                                  | 6 $7$ $9$ $10$ $5$ 6 Diothul 2 mothuldas 4 and                                                                  |
| dr dr                                                                                                                                                                                            | 5, 6-Diethyl-3-methyldec-4-ene<br>59. (3)                                                                       |
| $\frac{dx}{dt} > 0$ for first half $\frac{dx}{dt} < 0$ for second half.                                                                                                                          | $NO_2^+$ , AlCl <sub>3</sub> , SO <sub>3</sub> and $CH_3^+C=0$ are electrophiles.                               |
| $\frac{dx}{dt} = \text{constant}$                                                                                                                                                                | 60. (1)<br>Three, that is, d-tartaric acid, 1-tartaric acid and                                                 |
| (1) Work done by a force is positive if displacement is in direction of force and work done by a force is                                                                                        | meso-tartaric acid.<br>61. (1)                                                                                  |
| negative if displacement is in direction opposite to                                                                                                                                             | $2NaHCO_3 \longrightarrow Na_2CO_3 + H_2O + CO_2$                                                               |
| that of force.<br>(2) $15 \min = 1/4 \ln n$ .                                                                                                                                                    | 2 mol of NaHCO <sub>3</sub> on complete decomposition gives 1 mol of Na <sub>2</sub> CO <sub>3</sub> .          |
| $V_{R}$ river $\overrightarrow{V_{R}}$                                                                                                                                                           | So, 0.2 mol of NaHCO <sub>3</sub> on complete                                                                   |
| $V_{R}$ river $V_{R}$<br>$\sqrt{V_{MR}} - V_{R}^{2}$                                                                                                                                             | decomposition gives 0.1 mol of $Na_2CO_3^-$ .<br>62. (4)                                                        |
|                                                                                                                                                                                                  | According to stoichiometry, they should react as follows:                                                       |
| $t = \frac{d}{V_y}$                                                                                                                                                                              | $4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(l)$ $4 \text{ mol}  5 \text{ mol}  4 \text{ mol}  6 \text{ mol}$ |
| $\implies \frac{1}{4} = \frac{1}{\sqrt{V_{MR}^2 - V_R^2}} = \frac{1}{4} = \frac{1}{\sqrt{5^2 - V_R^2}}$                                                                                          | 0.8 mol 1 mol 0.8 mol 1.2 mol                                                                                   |

5

IIR»

In this reaction 1 mole of  $O_2$  and 0.8 mole of  $NH_3$  are consumed. There by indicating complete consumption of  $O_2$ .

- 63. (3)
- Order of stability of carbanions is  $1^{\circ} > 2^{\circ} > 3^{\circ}$ . 64. (1) II > I > III
- 65. (3) As both the carbon atoms of each of the three double bonds are differently substituted, therfore,  $2^3 = 8$  geometrical isomers are possible.
- 66. (4) Number of moles of oxygen  $= 2 \times$  number of moles of given compounds
- 67. **(1)** 1
- 68. (4) If both assertion and reason are false.
- 69. (4)  $E^+$  attacks on ring which has more  $e^-$  density.
- 70. (2) 1 is staggered and 2 is eclipsed.
- 71. (2) 2s
- 72. (2) As values of m is from -1 to +1 including zero.
- 73. **(4)** All the above
- 74. (2) Higher are number of  $\alpha H$ , more the hyperconjugating structures, more the stability of the compound.
- 75. (1) 1, 2 and 3 Since 1999
- 76. **(4)** Helium nuclei, which impinged on a metal foil and got scattered
- 77. **(1)** 1

- 79. **(4)** (A) is elimination, (B) is substitution and (C) is addition reaction
- 80. **(4)** (1)-(iv), (2)-(iii), (3)-(ii), (4)-(i)
- 81. (4)

$$X_3 = \frac{X_1 X_2}{X_1 + X_2}$$

- 82. **(3)** (1)-(iv), (2)-(ii), (3)-(i), (4)-(iii)
- 83. **(3)** Four primary amines are possible. These are: CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>NH<sub>2</sub>, (CH<sub>3</sub>)<sub>2</sub>CH–CH<sub>2</sub>NH<sub>2</sub>, CH<sub>3</sub>CH(NH<sub>2</sub>)CH<sub>2</sub>CH<sub>3</sub> and (CH<sub>3</sub>)<sub>3</sub>CNH<sub>2</sub>.
- 84. (1)  $9\sigma$  and  $9\pi$
- 85. (4) Statement-I is incorrect and Statement-II is correct

### SECTION - B (Attempt Any 10 Questions)

- 86. (3) Statement-I is correct but Statement - II is incorrect. Zeros at the end or right of a number are significant provided they are on the right side of the decimal point.
- 87. (1) Molecular weight of the metal chloride

$$=\frac{0.72\times22400}{100}=161.28\,\mathrm{g}$$

Weight of chlorine in metal chloride

$$=\frac{65.5\times161.28}{100}=105.64\,\mathrm{g}$$

So, Mole atoms of chlorine  $=\frac{105.64}{35.5}=3$ 

Hence, metal chloride is MCl<sub>3</sub>

88.

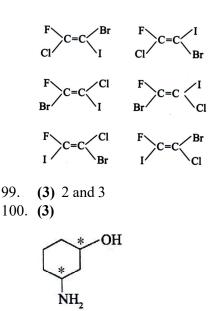
- 90. (3) Charge of electron
- 91. (1) As halogens are most electronegative so the configuration is ns<sup>2</sup> np<sup>5</sup>.
- 92. **(2)**

94.

**CAREER INST** 

Carbanions are stabilised by electron withdrawing groups.  $-NO_2$  is stronger electron withdrawing group as compared to -CHO. At ortho-position, the effect is more pronounced.

### 93. **(3)**


(3)

 $-NO_2$  group is meta-directing, thus will stabilize a electrophile at m-position.

nm

$$\frac{\text{TUTE}_{\lambda} = \frac{\text{T.LTh}}{\sqrt{2m(\text{KE})}} = 0.3328$$

- 95. (3) As maximum number of electrons in any orbit, sub-orbit or orbital is decided by Pauli's law.
- 96. (1) Non-superimposable on its mirror image.
- 97. **(4)** The two stereoisomers are not mirror images and hence, the diastereomers.
- 98. (4) Six isomers are

