NEET FRESH 2023-24

Mark Group

 720 PCB PCB EXAM-61 Date : 30/1212023 Time : 3:20 Hours
Answer Key Version - S (NEET FRESH All Batches)

Physics					Chemistry				
Sec.A	11. 1	22. 3	33. 3	43. 1	Sec. A	61. 3	72. 2	83. 4	93. 4
01. 2	12. 2	23. 1	34. 1	44. 3	51. 4	62. 3	73. 4	84. 3	94. 2
02. 1	13. 4	24. 2	35. 2	45. 3	52. 3	63. 2	74. 3	85. 2	95. 2
03. 3	14. 1	25. 3	Sec. B	46. 1	53. 2	64. 3	75. 3	Sec. B	96. 4
04. 2	15. 2	26. 4	36.54	47.15 Ler	54. 1	65. 3_{\circledast}	76. 4	86. 2	97. 3
05. 2	16. 4	27. 4	37. 1	48. 2	55. 3	66. 2	77. 1	87. 1	98. 4
06. 3	17. 4	28. 2	38. 4	49. 4	56. 1	67. 2	78. 1	88. 1	99. 1
07. 4	18. 2	29. 4	39. 4	50. 4	57. 1	68. 4	79. 4	89. 1	100. 2
08. 4	19. 2	30. 4	40.11	R INE	58. 3	69. 2	80. 2	90. 1	
09. 3	20. 2	31. 4	41. 2		59. 2	70. 1	81. 1	91. 3	
10. 2	21. 3	32. 3	42. 1		60. 2	71. 4	82. 2	92. 3	
Biology									
$\begin{aligned} & \text { Part-I } \\ & \text { Sec.A } \end{aligned}$	110. 1	121. 1	132. 1	142. 2	Part-II Sec.A	160. 3	171. 1	182. 4	192. 1
	111. 1	122. 2	133. 2	143. 2		161. 2	172. 1	183. 3	193. 3
101.2	112. 2	123. 2	134. 1	144. 2	151. 2	162. 4	173. 2	184. 1	194. 4
102. 4	113. 3	124. 3	135. 1	145. 3	152. 2	163. 3	174. 4	185. 3	195. 3
103. 2	114. 2	125. 3	Sec.B	146. 3	153. 3	164. 2	175. 3	Sec. B	196. 2
104. 2	115. 1	126. 1	136. 3	147. 3	154. 1	165. 2	176. 1	186. 1	197. 3
105. 4	116. 1	127. 3	137. 4	148. 1	155. 2	166. 2	177. 1	187. 1	198. 3
106. 2	117. 1	128. 4	138. 4	149. 4	156. 2	167. 1	178. 3	188. 1	199. 2
107. 3	118. 1	129.3	139. 4	150. 3	157. 1	168. 4	179. 3	189. 1	200. 3
108. 2	119. 2	130. 4	140. 2		158. 2	169. 3	180. 3	190. 2	
109. 4	120. 4	131. 4	141. 2		159. 3	170. 4	181. 4	191. 4	

PHYSICS

SECTION - A (35 Questions)

1. (2) When target is very light and at rest then after head on elastic collision it moves with double speed of projectile i.e. the velocity of body of mass m will be 2 v .
2. (1) $U_{1}=m g h_{1}$ and $U_{2}=m g h_{2}$
$\%$ energy lost $=\frac{U_{1}-U_{2}}{U_{1}} \times 100$

$$
\begin{aligned}
\frac{m g h_{1}-m g h_{2}}{m g h_{1}} \times 100 & =\left(\frac{h_{1}-h_{2}}{h_{1}}\right) \times 100 \\
& =\frac{2-1.5}{2} \times 100=25 \%
\end{aligned}
$$

3. (3) From the triangle $B C D$

$C D^{2}=B C^{2}-B D^{2}=a^{2}-\left(\frac{a}{2}\right)^{2}$

$$
x^{2}=\frac{3 a^{2}}{4} \Rightarrow x=\frac{\sqrt{3} a}{2}
$$

Moment of inertia of system along the side $A B$

$$
\begin{aligned}
& I_{\text {system }}=I_{1}+I_{2}+I_{2}=m \times(0)^{2}+m \times(x)^{2}+m \times(0)^{2} \\
& \quad=m x^{2}=m\left(\frac{\sqrt{3} a}{2}\right)^{2}=\frac{3 m a^{2}}{4} .
\end{aligned}
$$

4. (2)
5. (2) Here, $\mathrm{R}=2 \mathrm{~m}, \mathrm{M}=100 \mathrm{~kg}, v=200 \mathrm{~cm} \mathrm{~s}^{-1}$

$$
=20 \times 10^{-2} \mathrm{~ms}^{-1}
$$

Total kinetic of the loop $=\mathrm{K}_{\mathrm{T}}+\mathrm{K}_{\mathrm{R}}$
$=\frac{1}{2} M v^{2}+\frac{1}{2} I \omega^{2}\left[\because\right.$ For a hoop, $\left.\mathrm{I}=\mathrm{MR}^{2}\right]$
$=\frac{1}{2} M v^{2}+\frac{1}{2} M R^{2} \omega^{2}$
$=\frac{1}{2} M v^{2}+\frac{1}{2} M v^{2}$
$[\because v=R \omega]$
$=\mathrm{M} v^{2}$

Work required to stop the hoop $=$ Total kinetic energy of the hoop.
$M v^{2}=(100 \mathrm{~kg})\left(20 \times 10^{-2} \mathrm{~ms}^{-1}\right)^{2}=4 J$
06. (3) $2 u+m \times O=\frac{2 u}{3}+m v$
$\frac{4 u}{3}=m v$
$e=1=\frac{V-\frac{u}{3}}{u-0}$
$V=\frac{4 u}{3}$
On solving (1) and (2)
$\frac{4 u}{3}=m \times \frac{4 u}{3}$
$\Rightarrow m=1 \mathrm{~kg}$.
07. (4) $L=\sqrt{2 I E}$. If E are equal then
$\frac{L_{1}}{L_{2}}=\sqrt{\frac{I_{1}}{I_{2}}}=\sqrt{\frac{I}{2 I}}=\frac{1}{\sqrt{2}}$.
08. (4) M.I. decreases and angular velocity increases.
09. (3) Force of friction
$=K$.E. of translation + K.E. of rotation
$=\frac{1}{2} M v^{2}+\frac{1}{2} I \omega^{2}$
$=\frac{1}{2} M v^{2}+\frac{1}{2} M k^{2} \frac{v^{2}}{R^{2}}$

$$
\left(\because \mathrm{I}=\mathrm{M} k^{2} \text { and } v=\omega R\right)
$$

$=\frac{1}{2} M v^{2}\left(1+\frac{k^{2}}{R^{2}}\right)$
$\frac{\text { K.E. of rotation }}{\text { Total K.E. }}=\frac{\frac{1}{2} M k^{2} \frac{v^{2}}{R^{2}}}{\frac{1}{2} M v^{2}\left(1+\frac{k^{2}}{R^{2}}\right)}$

$$
=\frac{\frac{k^{2}}{R^{2}}}{1+\frac{k^{2}}{R^{2}}}=\frac{k^{2}}{k^{2}+R^{2}}
$$

10. (2) Velocity interchange when mass are equal

So K.E. $=m g L$.
11. (1) Conceptual
12. (2) $I_{c m}=\frac{M L^{2}}{12}$ (about middle point)

$\therefore I=I_{c m}+M x^{2}=\frac{M L^{2}}{12}+M\left(\frac{L}{6}\right)^{2}=\frac{M L^{2}}{9}$.
13. (4)

Weight of the rod will produce the torque.
$\tau=I \alpha \Rightarrow m g \times \frac{l}{2}=\frac{m l^{2}}{3} \times \alpha$
Angular acceleration $\alpha=\frac{3 g}{2 l}$.
14. (1) Angular momentum of system remains constant $I \propto \frac{1}{\omega} \Rightarrow \frac{I_{2}}{I_{1}}=\frac{\omega_{1}}{\omega_{2}}=\frac{20}{10} \Rightarrow I_{2}=2 I_{1}=2 I$.
15. (2) Rotational kinetic energy $=\frac{1}{2} I \omega^{2}=1500$
$\Rightarrow \frac{1}{2} \times 1.2 \times \omega^{2}=1500$
$\Rightarrow \omega^{2}=\frac{3000}{1.2} \Rightarrow \omega=50 \mathrm{rad} / \mathrm{s}$
Initially the body was at rest and after t sec its angular velocity becomes $50 \mathrm{rad} / \mathrm{s}$.
$\omega=\omega_{0}+\alpha t \Rightarrow 50=0+25 \times t$
$\Rightarrow t=2 s$.
16. (4) $f=\frac{K E_{t}}{K E_{t}+K E_{r}}=\frac{\frac{1}{2} m v^{2}}{\frac{1}{2} m v^{2}+\frac{1}{2} I \omega^{2}}=\frac{5}{7}$

$$
\left[\because \omega=\frac{v}{R}, I=\frac{2}{5} m R^{2}\right]
$$

17. (4)
18. (2) $E=\frac{L^{2}}{2 I} \therefore E \propto L^{2} \Rightarrow \frac{E_{2}}{E_{1}}=\left(\frac{L_{2}}{L_{1}}\right)^{2}$
$\frac{E_{2}}{E_{1}}=\left(\frac{L_{1}+200 \% \text { of } L_{1}}{L_{1}}\right)^{2}=\left(\frac{L_{1}+2 L_{1}}{L_{1}}\right)^{2}=(3)^{2}$
$\Rightarrow E_{2}=9 E_{1}$
Increment in kinetic energy $\Delta E=E_{2}-E_{1}=9 E_{1}-E_{1}$
$\Delta E=8 E_{1} \quad \Delta E=8 E_{1} \quad \therefore \frac{\Delta E}{E_{1}}=8$ or percentage increase $=800 \%$.
19. (2) $a=\frac{g \sin \theta}{1+\frac{K^{2}}{R^{2}}}$

For disc $\frac{K^{2}}{R^{2}}=\frac{1}{2}=0.5$
For sphere $\frac{K^{2}}{R^{2}}=\frac{2}{5}=0.4$
a (sphere) $>a($ disc $)$
\therefore sphere reaches first
20. (2)
21. (3)

$X_{\text {com }}=\frac{2000 \times 30}{2000+1000}=\frac{2000 \times 30}{3000}=20 \mathrm{~m}$.
22. (3) A-2 ; B-1; C-4 ; D-3

Rolling motion \rightarrow combination of translatory and rotatory motion
Rate of change of angular momentum \rightarrow torque $\frac{d L}{d t}=\tau$

Moment of inertia of a hollow cylinder about axis $=M R^{2}$ Theorem of parallel axis
$I=I_{c o m}+M r^{2}$.
23. (1) $X_{c m}=\frac{m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}}{m_{1}+m_{2}+m_{3}}$
$X_{c m}=\frac{300(0)+500(40)+400(70)}{300+500+400}$
$X_{c m}=\frac{500 \times 40+400 \times 70}{1200} \Rightarrow X_{c m}=40 \mathrm{~cm}$.
24. (2) $X=\frac{m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}+m_{4} x_{4}}{m_{1}+m_{2}+m_{3}+m_{4}}$
$X=\frac{0+40 x_{4}}{100} \Rightarrow 3=\frac{40 x_{4}}{100} \Rightarrow x_{4}=\frac{300}{40}=7.5$
Similarly $y_{4}=7.5$ and $z_{4}=7.5$.
25. (3) According to law of conservation of linear momentum both pieces should possess equal momentum after explosion. As their masses are equal therefore they will possess equal speed in opposite direction.
26. (4) In the given situation, projectile could be considered as rigid body before explosion and after explosion, as its fragments are considered as system of particles. Thus, the concept of COM is applicable to both.

Since, the explosion is due to internal forces, so the motion ofCOM after explosion will follow the same parabolic path as it would have followed if there was no explosion.
Thus, statement given in option (4) is correct, rest are incorrect.
27.
(4) $\mathrm{E}_{\text {sphere }}=\frac{1}{2} I_{s} \omega^{2}=\frac{1}{2} \times \frac{2}{5} M R^{2} \times \omega^{2}$
$\mathrm{E}_{\text {Cylinder }}=\frac{1}{2} I_{c}(2 \omega)^{2}=\frac{1}{2} \times \frac{M R^{2}}{2} \times 4 \omega^{2}$
$\frac{E_{\text {sphere }}}{E_{\text {cylinder }}}=\frac{1}{5}$
28. (2) According to the equation of motion of the centre of mass. $\quad M \vec{a}_{C M}=\vec{F}_{\text {ext. }}$.

If $\vec{F}_{\text {ext. }}=0$,

$$
\vec{a}_{C M}=0
$$

i.e., $\quad \vec{v}_{C M}=$ constant
i.e., if no external force acts on a system (or resultant external force acting on a system is zero) the velocity of its centre of mass remains constant (i.e., velocity of the centre of mass is unaffected by internal forces).

Here, $\mathrm{F}_{\text {net }}=0$ but Kinetic energy will increase.
29. (4)
30. (4) Change in momentum

$$
=m \overrightarrow{\mathrm{v}}_{2}-m \overrightarrow{\mathrm{v}}_{1}=-m v-m v=-2 m v .
$$

31. (4) Resolve the $90 \mathrm{~N}, 80 \mathrm{~N}$ and 70 N force into x and y components. The line of action of $90 \mathrm{~N}, 50 \mathrm{~N}$, and x-components of the 80 N and 70 N forces pass through the pivot point A , therefore they cause on rotation.
\therefore The total torque about point A is
$=\left(80 \sin 30^{\circ}\right)\left(\frac{L}{2}\right)-(60)\left(\frac{L}{2}\right)+\left(70 \cos 60^{\circ}\right)(L)$
$=(80)\left(\frac{1}{2}\right)\left(\frac{3}{2}\right)-(60)\left(\frac{3}{2}\right)+(70)\left(\frac{1}{2}\right)(3)$
$=75 \mathrm{Nm}$.
32. (3) According to conservation of angular momentum
$I_{1} \omega_{1}=I_{2} \omega_{2} \Rightarrow \frac{1}{2} M R^{2} \omega=\left(\frac{1}{2} M R^{2}+\frac{1}{2}\left(\frac{M}{4}\right) R^{2}\right) \omega_{2}$
$\therefore \omega_{2}=\frac{4}{5} \omega$.
33. (3)

Before collision

After collision

Here, $m=0.25 \mathrm{~kg}, u_{1}=3 \mathrm{~m} / \mathrm{s}, u_{2}=-1 \mathrm{~m} / \mathrm{s}$
It is an inelastic collision.
According to conservation of momentum
$m u_{1}+m u_{1}=(m+m) u$
$\Rightarrow \mathrm{v}=\frac{m u_{1}+m u_{2}}{2 m}=\frac{u_{1}+u_{2}}{2}=\frac{3-1}{2}=1 \mathrm{~m} / \mathrm{s}$.
34. (1) Given, $r=0.4 \mathrm{~m}, \alpha=8 \mathrm{rad} / \mathrm{s}^{2}, m=4 \mathrm{~kg}, I=$?

Torque, $\tau=I \alpha=m g r \Rightarrow 4 \times 10 \times 0.4=I \times 8$
$\Rightarrow I=\frac{16}{8}=2 \mathrm{~kg}-\mathrm{m}^{2}$.
35. (2) $K E=\frac{L^{2}}{2 I} \Rightarrow K E \propto \frac{1}{I}$ for same L

Section - B (Attempt Any 10 Questions)

36. (4) According to parallel axes theorem
$I=\frac{2}{5} m R^{2}+m x^{2}$
Hence graph (4) correctly depicts I vs x.
37. (1) By conservation of momentum,
$m v+M \times 0=(m+M) V$
Velocity of composite block $V=\left(\frac{m}{m+M}\right) v$
K.E. of composite block $=\frac{1}{2}(M+m) V^{2}$
$=\frac{1}{2}(M+m)\left(\frac{m}{M+m}\right)^{2} v^{2}=\frac{1}{2} m v^{2}\left(\frac{m}{M+m}\right)$.
38. (4) From law of conservation of mechanical energy

$$
\left[0-\left(\frac{1}{2} I \omega^{2}+\frac{1}{2} m v^{2}\right)\right]+\left(m g \times \frac{3 v^{2}}{4 g}\right)=0
$$

$$
\Rightarrow \frac{1}{2} I \omega^{2}=\frac{3}{4} m v^{2}-\frac{1}{2} m v^{2}=\frac{m v^{2}}{2}\left(\frac{3}{2}-1\right)=\frac{m v^{2}}{4}
$$

As cylinder is rolling $\omega=\frac{v}{R}$
or $\frac{1}{2} I \frac{v^{2}}{R^{2}}=\frac{m v^{2}}{4}$
or $\mathrm{I}=\frac{1}{2} m R^{2}$

Hence, object is disc.
39. (4) Conceptual.
40. (1) $a=\frac{(3 m-m)}{3 m+m} g=\frac{g}{2}$
$\overrightarrow{\mathrm{a}}_{\mathrm{cm}}=\frac{3 \mathrm{~m} \overrightarrow{\mathrm{a}}_{1}+\mathrm{m} \overrightarrow{\mathrm{a}}_{2}}{3 \mathrm{~m}+\mathrm{m}}$
Both mass have same magnitude of acceleration but in opposite direction $\overrightarrow{\mathrm{a}}_{1}=-\overrightarrow{\mathrm{a}}_{2}=\mathrm{a}$ (Let)

$$
\mathrm{a}_{\mathrm{cm}}=\left(\frac{3 \mathrm{~m}-\mathrm{m}}{4 \mathrm{~m}}\right) \times \frac{\mathrm{g}}{2}=\frac{\mathrm{g}}{4}
$$

41. (2) As there is no external torque about the axis of rotation on the system of platform and tortoise, angular momentum will remain unchanged. As the tortoise moves moment of inertia of system will first decrease and then increase.

Hence angular velocity will first increase and then decrease. Also variation will not be linear.
42. (1) Mass of smaller circle $=M$

$$
\begin{aligned}
I & =\frac{9 M R^{2}}{2}-\left(\frac{1}{2} M\left(\frac{R}{3}\right)^{2}+M\left(\frac{2 R}{3}\right)^{2}\right) \\
& =4 M R^{2} .
\end{aligned}
$$

43. (1)

When the cylinder is about to be raised, reaction at A vanishes. Taking torque about P.
$F(2 R-h) \geq W l$
$l=\sqrt{R^{2}-(R-h)^{2}}$
$=\sqrt{R^{2}-\left(R-\frac{R}{3}\right)^{2}}$
$\Rightarrow \sqrt{R^{2}-\frac{4 R^{2}}{9}}=\frac{\sqrt{5} R}{3}$
$2 R-h=2 R-\frac{R}{3}=\frac{5 R}{3}$
$F \times \frac{5 R}{3} \geq W \times \frac{\sqrt{5} R}{3}$
$F \geq \frac{W}{\sqrt{5}} \Rightarrow F_{\min }=\frac{W}{\sqrt{5}}$.
44. (3) $h=e^{2 n} h_{0}$
here, $n=2$, so $\frac{h}{2}=e^{4} h$
$\Rightarrow e=\left(\frac{1}{2}\right)^{1 / 4}$.
45. (3)

There is no external force so centre of mass will not shift.
46. (1) Angular momentum can be conserved about lowest point.
$m v_{0} r+\frac{2}{5} m r^{2} \frac{v_{0}}{2 r}=m v^{\prime} r+\frac{2}{5} m r^{2} \frac{v^{\prime}}{r}$
$\frac{10 m v_{0} r+2 m v_{0} r}{10}=\frac{7 m v^{\prime} r}{5}$
$v^{\prime \prime}=\frac{6 v_{0}}{7}$
47. (1)

Particle falls from height h then formula for height covered by it in nth rebound is given by

$$
h_{n}=e^{2 n} h
$$

where $e=$ coefficient of restitution, $n=\mathrm{No}$. of rebound Total distance travelled by particle before rebounding has stopped

$$
\begin{aligned}
H & =h+2 h_{1}+2 h_{2}+2 h_{3}+2 h_{4}+\ldots . . . \\
& =h+2 h e^{2}+2 h e^{4}+2 h e^{6}+2 h e^{8}+\ldots \ldots . . \\
& =h+2 h\left(e^{2}+e^{4}+e^{6}+e^{8}+\ldots \ldots . .\right) \\
& =h+2 h\left[\frac{e^{2}}{1-e^{2}}\right]=h\left[1+\frac{2 e^{2}}{1-e^{2}}\right]=h\left(\frac{1+e^{2}}{1-e^{2}}\right) .
\end{aligned}
$$

48. (2) $m=2 \mathrm{~kg}, V_{1}=0, V_{2}=$?,
$t=5, \mathrm{~J}=$ Area
$m\left(V_{2}-V_{1}\right)=\frac{1}{2} \times 5 \times 10$
$2\left(V_{2}-0\right)=25$
$V_{2}=12.5 \mathrm{~m} / \mathrm{s}$.
49. (4) Apply conservation of angular momentum about the hinge.
$m \nu R=\frac{m}{2} R^{2} \omega+m(R \omega) R$
$R \omega=\frac{2 v}{3}=\frac{2 \times 5}{3}=\frac{10}{3} \mathrm{~m} / \mathrm{s}$.
50. (4) Rotational kinetic energy is
$K_{R}=\frac{1}{2} I \omega^{2}=\frac{1}{2} M k^{2}\left(\frac{v}{R}\right)^{2}$
$\left(\because \mathrm{I}=\mathrm{M} k^{2}\right.$ and $\left.v=R \omega\right)$
$\frac{1}{2} M v^{2}\left(\frac{k^{2}}{R^{2}}\right)$
Translational kinetic energy is
$K_{T}=\frac{1}{2} M v^{2}$
As per question,
$\mathrm{K}_{\mathrm{R}}=40 \% \mathrm{~K}_{\mathrm{T}}$
$\therefore \frac{1}{2} M v^{2}\left(\frac{k^{2}}{R^{2}}\right)=40 \% \frac{1}{2} M v^{2}$
or $\frac{k^{2}}{R^{2}}=\frac{40}{100}=\frac{2}{5}$
For a solid sphere,
$\frac{k^{2}}{R^{2}}=\frac{2}{5}$
Hence, the body is solid ball.

CHEMISTRY

SECTION - A (35 Questions)

51. (4)
$-\mathrm{NO}_{2}$ group, being strong electron-withdrawing, disperses the -ve charge, hence stabilizes the concerned carbanion.
52. (3)

In aqueous phase the decreasing order of basicity as

53. (2)

54. (1)

55. (3)
$\mathrm{CN}^{-}, \mathrm{RCH}_{2}^{-}, \mathrm{ROH}$
56. (1)

an

57. (1)

Cyclohexylamine
58. (3)

59. (2)

The compound is a derivative of benzoic acid. The positions of substituents attached to benzene nucleus are represented by number of C -atoms and not by ortho, meta and para.
60. (2)
(a) $>$ (d) $>$ (b) $>$ (c)

Due to S.I.P. effect (ortho effect) ortho methyl aniline is less basic than aniline.
61. (3)
b>a>c
62. (3)

2-ethyl-3-methylpentanal
63. (2)

Stability order of different alkyl carbocations on the basis of hyperconjugation is : $3^{\circ}>2^{\circ}>1^{\circ}>$ methyl In t-butyl cation, the C -atom bearing the positive charge is attached to three methyl groups therefore it possess nine α-hydrogens. It will give maximumnine hyperconjugative structures leading to maximum stability.
64. (3)
a, b, d
65. (3)
$\mathrm{sp}^{3}, \mathrm{sp}^{2}, \mathrm{sp}$
66. (2)

Antiform of butane is most stable conformer because of least steric and torsinal strain.
67. (2)

Electromeric effect is purely a temporary effect and is brought into play only at the requirement of attacking reagent, it vanishes out as soon as the attacking reagent is removed from reaction mixture.
68. (4)

All of these
69. (2)
-OH shows +Reffect while $C=0$ shows $-R$ effect.
70. (1)

$$
\mathrm{A}-(\mathrm{q}), \mathrm{B}-(\mathrm{p}), \mathrm{C}-(\mathrm{r}), \mathrm{D}-(\mathrm{s})
$$

71. (4)

$$
\mathrm{CH}_{3} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}
$$

72. (2)

7
73. (4)

74. (3)

75. (3)
(c) $>$ (b) $>$ (d) $>$ (a)

Because of ortho effect O-Toluic acid is more acidic than benzoic acid.
76. (4)
n-propyl propanoate
77. (1)

Diethyl ketone and methyl propyl ketone are position isomers
78. (1)

Molecular symmetry
79. (4)

Both (1) and (2)
80. (2)

2
81. (1)
$A-(p), B-(r), C-(q), D-(s)$
82. (2)
$\mathrm{A}-(\mathrm{p}), \mathrm{B}-(\mathrm{p}), \mathrm{C}-(\mathrm{q})$
83. (4)

84. (3)

Infinite
85. (2)

The compound contains longest chain of 5C atoms and e of ene is retained as the suffix name starts with constant

SECTION - B (Attempt Any 10 Questions)

86. (2)

3, 4, 6-trimethyl octane
87. (1)

88. (1)

If both assertion and reason are true and the reason is the correct explanation of the assertion.
89. (1)

3-methyl-1-hexen-5-yne
90. (1)

If both assertion and reason are true and the reason is the correct explanation of the assertion.
91. (3)
$\mathrm{Cl}_{2} \mathrm{C}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}$. It can't show geometrical isomerism due to unsymmetrical alkene.
92. (3)

All resonating structures should have same number of electron pairs
93. (4)

Has two dissimilar groups attached to both ends of double bond
94. (2)

95. (2)

3
96. (4)

Assertion is incorrect, reason is correct
97. (3)

1, 1
98. (4)

IV $>$ III $>$ I $>$ II
99. (1)

100. (2)

