

NEET FRESH 2023-24

Mark 720 Group PCB

PCB EXAM - 67

Date: 17/01/2024 Time: 3:20 Hours

Answer Key Version - S (NEET FRESH All Batches)

Physics					Chemistry				
Sec. A	11. 1	22. 1	33. 4	43. 4	Sec. A	61. 3	72. 1	83. 4	93. 2
01. 4	12. 2	23. 2	34. 4	44. 4	51. 2	62. 1	73. 3	84. 4	94. 3
02. 3	13. 1	24. 4	35. 2	45. 3	52. 3	63. 3	74. 3	85. 4	95. 2
03. 3	14. 2	25. 3	Sec. B	46. 2	53. 3	64. 1	75. 1	Sec. B	96. 3
04. 4	15. 3	26. 2	36.1504900	14 7 015 4 :er	fie54. 4	65. 4 _®	76. 1	86. 1	97. 2
05. 2	16. 4	27. 1	37. 3	48. 1	55. 1	66. 4	77. 3	87. 2	98. 3
06. 4	17. 4	28. 1	38. 2	49. 1	56. 3	67. 2	78. 3	88. 4	99. 2
07. 1	18. 4	29. 2	39. 2	50. 2	57. 3	68. 1	79. 3	89. 4	100. 4
08. 4	19. 4	30. 4	40. 4	KNEI	58. 4	69. 1	80. 2	90. 3	
09. 4	20. 1	31. 2	41. 1		59. 3	70. 4	81. 2	91. 4	
10. 2	21. 3	32. 2	42. 4		60. 1	71. 3	82. 1	92. 4	
Biology									
Part-I	110. 2	121. 4	132. 3	142. 4	Part-II	160. 3	171. 1	182. 4	192. 4
Sec.A	111. 4	122. 4	133. 2	143. 2	Sec.A	161. 3	172. 1	183. 2	193. 1
101. 3	112. 2	123. 2	134. 1	144. 4	151. 3	162. 1	173. 3	184. 2	194. 2
102. 2	113. 3	124. 1	135. 3	145. 3	152. 2	163. 1	174. 1	185. 1	195. 3
103. 1	114. 4	125. 2	Sec.B	146. 3	153. 4	164. 3	175. 4	Sec. B	196. 4
104. 4	115. 4	126. 1	136. 2	147. 3	154. 1	165. 3	176. 2	186. 3	197. 3
105. 3	116. 3	127. 3	137. 3	148. 3	155. 4	166. 2	177. 4	187. 2	198. 3
106. 4	117. 2	128. 3	138. 2	149. 1	156. 1	167. 3	178. 3	188. 3	199. 2
107. 3	118. 1	129. 2	139. 3	150. 4	157. 1	168. 2	179. 2	189. 3	200. 3
108. 2	119. 4	130. 4	140. 2		158. 3	169. 2	180. 2	190. 3	
109. 3	120. 4	131. 4	141. 4		159. 2	170. 4	181. 3	191. 2	

IIB»

PHYSICS

SECTION - A (35 Questions)

01. (4)

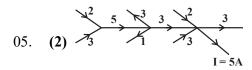
02. **(3)**
$$R_0 + R_0 \times \frac{40}{100} = R_0 [1 + \infty (T - 0)]$$

$$1+0.4=1+3.92\times10^{-3}\times T$$

$$\Rightarrow 0.4 = 3.92 \times 10^{-3} \times T$$

$$\frac{0.4}{3.92 \times 10^{-3}} = T$$

$$100 \, ^{\circ}\text{C} = \text{T}$$


03. **(3)** Because bulb Q is short circuited so no current will pass through Q.

04. (4)
$$\rightarrow A$$
 $\rightarrow B$

$$V_{A} - V_{B} = 10 + 2.r$$

$$\Rightarrow 17 = 10 + 2r$$

$$\Rightarrow 7 = 2r \Rightarrow r = 3.5\Omega$$

06. **(4)** 5, 12 & 17 are short circuited no current will pass through these bulbs.

07. **(1)**
$$R_{eq} = 20 \ \Omega$$

$$i = \frac{60}{20} = 3A$$

Voltage through $10_{\Omega} = 3 \times 10 = 30 \text{ V}$

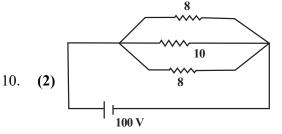
08. **(4)**
$$i = \frac{60}{20} = 3A$$

09. **(4)**
$$R_{eq}$$
 of circuit = $\frac{R \times 1}{R+1} + 1$

$$= \frac{R+R+1}{R+1} = \frac{2R+1}{R+1}$$

Current through battery =
$$15 \times \frac{R+1}{2R+1}$$

Power through battery = Power dissipated through circuit = VI


$$\Rightarrow$$
150 = $\frac{15}{2R+1}$ · $(R+1)$ 15

$$\Rightarrow 150 = \frac{15 \times 15}{(2R+1)}(R+1)$$

$$20R + 10 = 15 R + 15$$

$$5R = 5$$

$$R = 1$$

Current through middle row = $\frac{100}{10} = 10A$

So current through bulb no 9 = 10 A also

Power dissipated = i^2 R

$$= 10^2$$
, $2 = 200$ W

- 11. (1)
- 12. **(2)** In an electrolyte there are positive and negative ions which drifts inside the electrolyte chemical when an electric field is applied onto it by some external potential difference.
- 13. **(1)** The current is steady that means the total amount of charge flowing through all the cross sections of the wire are same.
- 14. **(2)** When cells are arranged in parallel the current is divided in all the cell branches so current capacity of the equivalent cell increases.
- 15. **(3)** In parallel combination voltage across all resistors is equal and current is divided in inverse ratio of the resistance.
- 16. **(4)** $C_{air} = \frac{C_{medium}}{K} = \frac{C}{2}$

17. **(4)**

18. **(4)**
$$Q = (kC)V$$

= $\left(\frac{5}{3} \times 90 \mu F\right) (20V)$
= 3000 pC
= 3nC

induced charges on dielectric

$$Q_{ind} = Q\left(1 - \frac{1}{K}\right) = 3nC\left(1 - \frac{3}{5}\right) = 1.2 nC$$

19. **(4)** Let R be resistance of each bulb. When the bulbs are connected in series, $R_s = 3R$

$$\therefore P_S = \frac{V^2}{R_S} = \frac{V^2}{3R} \qquad \dots (1)$$

When the bulbs are connected in parallel,

$$\frac{1}{R_P} = \frac{1}{R} + \frac{1}{R} + \frac{1}{R} \text{ or } R_P = \frac{R}{3}$$

$$P_{p} = \frac{V^{2}}{R_{p}} = \frac{V^{2}}{(R/3)} = \frac{3V^{2}}{R}$$
 ...(ii)

Divide (ii) by (i), we get, $\frac{P_P}{P_S} = \frac{3V^2}{R} \times \frac{3R}{V^2} = 9$

$$P_P = 9P_S = 9 \times 20W = 180W$$

20. **(1)**
$$i_g = i \frac{S}{G+S} \Rightarrow 10 \times 10^{-3} = \frac{S}{100+S} \times 100 \times 10^{-3}$$

$$90 \text{ S} = 1000 \Rightarrow S = \frac{1000}{90} = 11.11\Omega$$
.

21. **(3)**

22. **(1)**
$$c = 4\pi \in R$$

$$= \frac{1}{9 \times 10^9} \cdot 2 = 2.2 \times 10^{-10} \,\mathrm{F}$$

23. **(2)** Charge on 1
$$\mu$$
F = CV = 1 × 10⁻⁶ × 10
= 10⁻⁶ × 10 = 10 μ C

charge on 3
$$\mu F$$
 = CV = $3\!\times\!10^{-6}\!\times\!20$ = $-60\mu C$

total charge = $-50 \mu C$

Find charge on 1 μ F & 3 μ F \rightarrow Q_1 , Q_2 respectively

then $\frac{Q_1}{Q_2} = \frac{C_1}{C_2}$ since potential of both conductor are same

$$\Rightarrow Q_1 = \frac{C_1}{C_1 + C_2} (Q_1 + Q_2) = \frac{1}{4} \times -50 = -12.5 \,\mu\text{C}$$

$$\Rightarrow Q_2 = \frac{C_2}{C_1 + C_2} (Q_1 + Q_2) = \frac{3}{4} \times -50 = -37.5 \,\mu\text{C}$$

24. **(4)** Let's assume V be the voltage of battery then energy stored in position 1 =

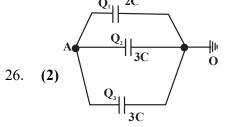
$$\frac{1}{2} \times 2 \times V^2 \mu J = V^2 \mu J$$

Initial charge on $2\mu F \times V = 2V\mu C$

Let after connecting the common potential becomes

$$V_{comm} = \frac{Q_{total}}{C_{cond}} = \frac{2V}{12} = \frac{V}{6} \text{Volt}$$

So final energy =


$$\frac{1}{2} \times 2 \times \left(\frac{V}{6}\right)^2 + \frac{1}{2} \times 10 \times \left(\frac{V}{6}\right)^2 = \frac{V^2}{6} \mu J$$

energy dissipated = $V^2 - \frac{V^2}{6} = \frac{5V^2}{6}$

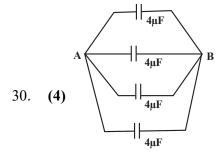
% energy dissipated =
$$\frac{5V^2}{6V^2} \times 100 = 83.33\%$$

25. (3) One capacitor is short circuited.

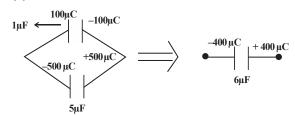
So net capacitance : $\frac{C}{2} + C = \frac{3C}{2}$

$$Q_1:Q_2:Q_3=C_1:C_2:C_3$$

$$Q_1 = \frac{C_1}{C_1 + C_2 + C_3} \cdot (Q_1 + Q_2 + Q_3)$$



$$\Rightarrow Q_1 = \frac{2}{8} \times 16 \,\mu\text{C} = 4 \mu\text{C}$$


27. **(1)**
$$C_1 = \frac{\epsilon_0 A}{d}$$

$$C_f = \frac{\epsilon_0 A}{d - \frac{d}{2} + \frac{d}{2\infty}} = \frac{2 \epsilon_0 A}{d}$$

$$\frac{C_f}{C_i} = \frac{2}{1}$$

Eq. Capacitance (A & B)
= 16 μF

$$V = \frac{Q}{C} = \frac{400\mu C}{6\mu C} = \frac{200}{3} \text{ V}$$

32. **(2)**
$$V = \frac{1}{2} \times 1 \times 100^2 + \frac{1}{2} \times 5 \times 100^2$$

= $\frac{1}{2} \times 6 \times 10^4 \mu \text{ J}$

 $= 3 \times 10^4 \times 10^{-6} J = 3 \times 10^{-2} J$

33. **(4)**
$$Q_{net} = 400 \,\mu\text{C}$$

$$C_{net} = 6\mu F$$

$$V = \frac{Q^2}{2C} = \frac{400 \times 400}{2 \times 6} = \frac{4}{3} \times 10^4 \,\mu \text{ J}$$
$$= 1.33 \times 10^{-2} \,\text{J}$$

34. **(4)**
$$C = \frac{4\pi \in_0 ab}{b-a}$$

is in series with C,

$$C_{a-b} = C_1 + C_2 = K_1 \frac{\epsilon_0 A/2}{d/2} + K_2 \frac{\epsilon_0 A/2}{d/2}$$
$$= (K_1 + K_2) \frac{\epsilon_0 A}{d}$$

$$C_3 = K_3 \frac{\epsilon_0 A}{d/2} = 2K_3 \frac{\epsilon_0 A}{d} \& C = \frac{K \epsilon_0 A}{d}$$

$$\frac{1}{C_{a-c}} = \frac{1}{C_{a-b}} + \frac{1}{C_{b-c}}$$

$$\Rightarrow \frac{1}{C} = \frac{d}{\epsilon_A A(K_{K_1+K_2})} + \frac{d}{2K_3 \epsilon_0 A}$$

$$\Rightarrow \frac{d}{\epsilon_0 A \cdot K} = \frac{d}{\epsilon_0 A \cdot (K_1 + K_2)} + \frac{d}{\epsilon_0 A \cdot 2K_3}$$

$$\Rightarrow \frac{1}{K} = \frac{1}{K_1 + K_2} + \frac{1}{2K_2}$$

Section - B (Attempt Any 10 Questions)

36. (4)

37. **(3)** The potential difference is divided in inverse ratio of capacitance in series combination so we use

$$V_{3\mu F} = \frac{6 \times 120}{3 + 6} = 80 \text{ V}$$

38. **(2)** In steady state, the capacitor branch acts like an open circuit. So the potential difference across C is the same which is there across resistance r_2 , given as

$$V_{r2} = \frac{Vr_2}{(r_1 + r_2)}$$

39. **(2)** The equivalent capacitance of the system shown in figure is given as

$$C_{eq} = 2C = 2\frac{\epsilon_0 A}{d}$$

$$\Rightarrow C_{eq} = \frac{2 \times 8.85 \times 10^{-12} \times 50 \times 10^{-4}}{3 \times 10^{-3}}$$

$$\Rightarrow C_{eq} = 2.95 \times 10^{-11} \text{F}$$

The energy stored between plates is given as

$$U = \frac{1}{2}C_{eq}V^2$$

$$\Rightarrow U = \frac{1}{2} \times 2.95 \times 10^{-11} \times 12^2 J$$

$$\Rightarrow U = 2.1 \times 10^{-9} J$$

40. (4) For the series combination of the top branch

$$\frac{V_{1\mu F}}{V_{1.5\mu F}} = \frac{1.5}{1} \implies V_{1\mu F} = \left(\frac{1.5}{1.5 + 1}\right)(30) = 18V$$

For the series combination of the lower branch we have

$$\frac{V_{2.5\mu F}}{V_{0.5\mu F}} = \frac{0.5}{2.5} = \frac{1}{5} \implies V_{2.5\mu F} = \left(\frac{1}{1+6}\right)(30) = 5V$$

$$\Rightarrow |V_{ab}| = V_{1uF} - V_{2.5uF} = 13V$$

41. (1) 20_{Ω} is removed since wheat stone bridge

$$res. = \frac{18 \times 9}{18 + 9} = 6\Omega$$

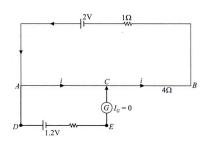
$$R_{eq} \text{ of circuit} = \frac{6 \times 6}{6 + 6} + 1$$
$$= 4 \text{ O}$$

42. (4) at S.S, capacitor offers infinite resistance

So current through
$$1_{\Omega} = \frac{20}{4} = 5A$$

P.D. through capacitor = $5 \times 1 = 5V$

Charge
$$Q = CV = 1 \mu F \times 5V = 5 \mu C$$


43. **(4)** Circuit current flows in clockwise and it is given

$$i = \frac{10 - 5}{2.5 + 2.5 + 40} = \frac{1}{9}$$
A

Writing equation of potential drops from B to A gives

$$V_B - 15i - 25i = V_A$$
 $\Rightarrow V_A - V_B - 40i = -\frac{40}{9}V$

44. **(4)** In the figure shown below at null deflection we have $V_{AC} = V_{DE}$

$$\Rightarrow i(R_{AC}) = E = 1.2$$

$$\Rightarrow \left(\frac{2}{4+1}\right) \left(\frac{4}{100} \times l\right) = 1.2$$

$$\Rightarrow l = 75 \text{cm}$$

45. **(3)** $R = \rho \cdot \frac{l}{A} \operatorname{So} R \propto l$

$$R_{final} = R_0 \times 1.25$$

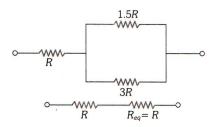
$$P_{initial} = \frac{V^2}{R_0}$$

$$P_{final} = \frac{V^2}{R_0 \times 1.25}$$

Since voltage of supply wil be smae.

$$decrement = \frac{P_{final} - P_{initial}}{P_{initial}} \times 100$$

$$\frac{\frac{V^2}{R_0 \times 1.25} - \frac{V^2}{R_0}}{\frac{V^2}{R_0}} \times 100$$


$$\Rightarrow \left(\frac{100}{125} - 1\right) \times 100 = \frac{-25}{125} \times 100 = -20\%$$

46. **(2)** No current flows through the capacitor branch in steady state. Total current supplied by the battery

$$i = \frac{6}{2.8 + 1.2} = \frac{3}{2}$$

Current through 2_{Ω} resistor = $\frac{3}{2} \times \frac{3}{5} = 0.9 \text{ A}$

47. **(4)**
$$V_B = V_C = V_A$$

- 48. (1) For ohmic resistance $V \propto i \Rightarrow V = Ri$ (here R is constant)
- 49. **(1)** Slope of V-i curve at any point equals to resistance at that point. From the curve slope for $T_1 > \text{slope for } T_2 \Rightarrow R_{T_1} > R_{T_2}$. Also at higher temperature resistance will be higher so $T_1 > T_2$.
- 50. (2) According to Kirchoff's second law for a complete traversal of a closed loop the algebraic sum of changes in potential is zero, *i.e.*, $\sum \Delta V = 0$.

For *n* closed loops there will be (n-1) equations.

CHEMISTRY

SECTION - A (35 Questions)

51. (2)

Kohlrausch's law states that at infinite dilution, each ion makes definite contribution to equivalent conductance of an electrolyte whatever be the nature of the other ion of the electrolyte.

52. **(3)**

R.P. of C > A > B.

53. **(3)**

 E_{cell} is an intensive property while ΔG of cell reaction is an extensive property

54. **(4)**

EMF of a cell = Reduction potential of cathode

- Reduction potential of anode
- = Reduction potential of cathode
 - +Oxidation potential of anode
- = Oxidation potential of anode
 - -Oxidation potential of cathod.
- 55. (1)

Strong electrolytes are completely ionised at all concentrations. On increasing dilution the no. of ions remains the same but the ionic mobility increases and the equivalent conduction increases.

56. (3)

$$E_{cell} = 0 - \frac{0.06}{2} \log \frac{C_1}{C_2} > 0 \text{ when } C_1 < C_2$$

57. **(3**)

$$E_{cell} = E_{cell}^{o} - \frac{0.059}{2} log \left\{ \frac{[Sn^{2+}]}{[Ag^{+}]^{2}} \right\}$$

58. (4)

Statement-1 is false, statement-2 is true

59. (3)

Statement-1 is true, statement-2 is false

60. (1)

PbSO₄ anode is reduced to Pb

61. **(3)**

$$1 = \eta \times 3 \implies \eta = \frac{1}{3}$$

62. **(1**)

 $\Delta_{\bullet}G = -2.303RT \log K$

- 63. (3) Gold has higher reduction potential than iron
- 64. (1)

At anode : $Sn \longrightarrow Sn^{2+} + 2e^{-}$ is more spontaneous

65. **(4)**

Pure copper as cathode and impure sample as anode

66. **(4)**

Dilute H₂SO₄ using Cu electrode

67. (2)

(a-u), (b-v), (c-w), (d-x)

68. **(1)**

Cr

69. (1)

-A

70. **(4)**

There is no reaction

71. (3)

Both are correct

72. (1)

H, is anode and Cu is cathode

73. **(3)**

Remains same

74. **(3)**

O₂ at anode and Cu at cathode

75. **(1**)

Anode is negative electrode

76. **(1)**

E° is an intensive property.

77. **(3)**

Oxygen

78. **(3)**

Both (1) and (2)

79. **(3)** R.A. itself gets oxidised easily, i.e., Mg.

80. **(2)**

0.1M HC1

81. (2)

$$R = \rho \frac{l}{A}$$

$$\frac{1}{\rho} = \frac{1}{R} \times \frac{l}{A}$$

$$\kappa = \frac{G^*}{R}$$

82. (1)

 $E_{cell} = 0$

83. (4)

Compounds of active metals (Zn, Na, Mg) are reducible by H₂ whereas those of noble metals (Cu, Ag, Au) are not reducible.

84. **(4)**

Mn

85. **(4)**

 $\Lambda_{\rm N}^{\rm o}$

SECTION - B (Attempt Any 10 Questions)

86. (1)

$$Br^{-} < Fe^{2+} < A1$$

87. **(2)**

Species having higher reduction potential will have greater oxidising power.

88. (4)

$$(n_{Ag}) \times 1 = (n_{Cu}) \times 2 = (n_{Au}) \times 3$$

89. (4)

$$\frac{[x_1 + x_2 - 2x_3]}{2}$$

90. **(3**)

$$\Delta G^{\circ} = -nFE^{\circ} = -2.303 RT \log_{10} K$$

$$\Rightarrow E^{\circ} = \frac{0.0591}{2} \log_{10}(2 \times 10^{19}) = +0.57 \text{ V}$$

91. **(4)**

> For a galvanic cell, $\Delta G\, \leq 0$ or $E_{\mbox{\tiny cell}} > 0$ and $Q \le K, \ \Delta G^{\circ} < 0.$

92. **(4)**

According to Faraday's second law,

$$\frac{W_{Ag}}{E_{Ag}} = \frac{W_{O_2}}{E_{O_2}} \text{ or } \frac{W_{Ag}}{108} = \frac{\frac{5600}{22400} \times 32}{8}$$

or
$$\frac{W_{Ag}}{108} = \frac{8}{8} \Rightarrow W_{Ag} = 108 g$$

93. **(2)**

> Statement-1 is true, statement-2 is true, statement-2 is not a correct explanation for statement-1

94. **(3)**

$$E_{R.P.} = -\frac{0.06}{2} log \left\{ \frac{P_{H_2}}{[H^+]^2} \right\} < 0 \text{ when } P_{H_2} > [H^+]^2$$

95. **(2)**

Decreases by 59 mV

96. (3)

$$(a-q), (b-r), (c-q, s), (d-p, r)$$

97. **(2)**

$$HA(aq) \rightleftharpoons H^{+}(aq) + A^{-}(aq)$$
At eqm. $c(1-\alpha) \qquad c\alpha \qquad c\alpha$

At eqm. $c(1-\alpha)$

$$K_{a}=\frac{c\alpha^{2}}{1-\alpha}; where \ \alpha=\frac{\Lambda_{m}}{\Lambda_{m}^{\infty}}$$

$$\therefore \quad K_{a} = \frac{x \left(\frac{\Lambda_{m}}{\Lambda_{m}^{\infty}}\right)^{2}}{\left(1 - \frac{\Lambda_{m}}{\Lambda_{m}^{\infty}}\right)}$$

$$=\frac{c\Lambda_{m}^{2}}{\Lambda_{m}^{\infty}(\Lambda_{m}^{\infty}-\Lambda_{m})}$$

98. **(3)**

$$\frac{2}{\frac{197}{3}} = \frac{i \times 20 \times 60}{96500} \Rightarrow i = 2.449 \text{ A}$$

99. **(2)**

100. (4)

$$E_{cell} = E_{cell}^{o} - \frac{0.059}{n} \log Q$$

$$=1.67 - \frac{0.059}{4} \log 10^7$$

$$=1.67 - \frac{0.059}{4} \times 7$$

$$=1.67-0.103$$

$$= 1.567 \,\mathrm{V}$$