Physics					Chemistry				
Sec. A	11. 4	22. 4	33. 1	43. 2	Sec. A	61. 3	72. 2	83. 3	93. 4
01. 2	12. 1	23. 4	34. 2	44. 2	51. 2	62. 3	73. 1	84. 3	94. 4
02. 2	13. 4	24. 4	35. 4	45. 4	52. 1	63. 4	74. 1	85. 2	95. 3
03. 4	14. 4	25. 1	Sec. B	46. 1	53. 4	64. 3	75. 4	Sec. B	96. 4
04. 4	15. 2	26. 3	36.50 2	47.154	54. 4	65. 1_{\odot}	76. 3	86. 3	97. 4
05. 2	16. 1	27. 1	37. 4	48. 4	55. 4	66. 3	77. 1	87. 2	98. 2
06. 4	17. 2	28. 2	38. 1	49. 4	56. 2	67. 1	78. 3	88. 3	99. 3
07. 3	18. 1	29. 4	39. 1	50. 3	57. 3	68. 3	79. 3	89. 2	100. 2
08. 3	19. 2	30. 3	40.2	K	58. ${ }^{1}$	69. 11	80. 1	90. 4	
09. 4	20. 3	31. 2	41. 4		59. 4	70. 4	81. 1	91. 1	
10. 2	21. 4	32. 1	42. 3		60. 1	71. 4	82. 3	92. 2	
Biology									
$\begin{aligned} & \text { Part-I } \\ & \text { Sec.A } \end{aligned}$	110. 3	121. 3	132. 3	142. 3	Part-II Sec.A	160. 4	171. 2	182. 4	192. 2
	111. 4	122. 2	133. 3	143. 2		161. 1	172. 3	183. 3	193. 3
101. 4	112. 3	123. 1	134. 2	144. 3	151. 3	162. 1	173. 2	184. 2	194. 3
102. 3	113. 2	124. 4	135. 4	145. 2	152. 4	163. 3	174. 2	185. 2	195. 3
103. 2	114. 3	125. 4	Sec.B	146. 4	153. 2	164. 2	175. 4	Sec. B	196. 2
104. 1	115. 2	126. 4	136. 3	147. 4	154. 2	165. 3	176. 1	186. 4	197. 4
105. 3	116. 4	127. 4	137. 3	148. 2	155. 1	166. 3	177. 1	187. 3	198. 1
106. 3	117. 2	128. 2	138. 3	149. 4	156. 3	167. 1	178. 3	188. 3	199. 2
107. 2	118. 3	129. 1	139. 1	150. 3	157. 2	168. 1	179. 1	189. 2	200. 3
108. 1	119. 4	130. 2	140. 4		158. 4	169. 3	180. 4	190. 3	
109. 4	120. 4	131. 1	141. 2		159.1	170.3	181. 2	191. 3	

PHYSICS

SECTION - A (35 Questions)

1. (2)

$$
V=\frac{Q}{C}=\frac{400 \mu C}{6 \mu C}=\frac{200}{3} \mathrm{~V}
$$

2. (2) $V=\frac{1}{2} \times 1 \times 100^{2}+\frac{1}{2} \times 5 \times 100^{2}$

$$
\begin{aligned}
& =\frac{1}{2} \times 6 \times 10^{4} \mu \mathrm{~J} \\
& =3 \times 10^{4} \times 10^{-6} \mathrm{~J}=3 \times 10^{-2} \mathrm{~J}
\end{aligned}
$$

3. (4) $Q_{\text {net }}=400 \mu \mathrm{C}$

$$
\begin{aligned}
& C_{n e t}=6 \mu \mathrm{~F} \\
& \mathrm{~V}=\frac{Q^{2}}{2 C}=\frac{400 \times 400}{2 \times 6}=\frac{4}{3} \times 10^{4} \mu \mathrm{~J} \\
&=1.33 \times 10^{-2} \mathrm{~J}
\end{aligned}
$$

4. (4) $C=\frac{4 \pi \in_{0} a b}{b-a}$
5. (2)
 is in series with C_{3}

$$
\begin{aligned}
C_{a-b}=C_{1} & +C_{2}=K_{1} \frac{\in_{0} A / 2}{d / 2}+K_{2} \frac{\in_{0} A / 2}{d / 2} \\
& =\left(K_{1}+K_{2}\right) \frac{\in_{0} A}{d}
\end{aligned}
$$

10.

$C_{3}=K_{3} \frac{\in_{0} A}{d / 2}=2 K_{3} \frac{\in_{0} A}{d} \& \mathrm{C}=\frac{K \in_{0} A}{d}$
$\frac{1}{C_{a-c}}=\frac{1}{C_{a-b}}+\frac{1}{C_{b-c}}$
$\Rightarrow \frac{1}{C}=\frac{d}{\in_{A} A\left(K_{K_{1}+K_{2}}\right)}+\frac{d}{2 K_{3} \in_{0} A}$
$\Rightarrow \frac{d}{\epsilon_{0} A \cdot K}=\frac{d}{\epsilon_{0} A \cdot\left(K_{1}+K_{2}\right)}+\frac{d}{\epsilon_{0} A \cdot 2 K_{3}}$
$\Rightarrow \frac{1}{K}=\frac{1}{K_{1}+K_{2}}+\frac{1}{2 K_{3}}$
06. (4)
07.
(3) $R_{0}+R_{0} \times \frac{40}{100}=R_{0}[1+\propto(T-0)]$
$1+0.4=1+3.92 \times 10^{-3} \times T$
$\Rightarrow 0.4=3.92 \times 10^{-3} \times \mathrm{T}$
$\frac{0.4}{3.92 \times 10^{-3}}=\mathrm{T}$
$100^{\circ} \mathrm{C}=\mathrm{T}$
08. (3) Because bulb Q is short circuited so no current will pass through Q .
09. (4)

$\mathrm{V}_{\mathrm{A}}-\mathrm{V}_{\mathrm{B}}=10+2 . r$
$\Rightarrow 17=10+2 r$
$\Rightarrow 7=2 r \Rightarrow r=3.5 \Omega$
(2)

11. (4) $5,12 \& 17$ are short circuited no current will pass through these bulbs.
12. (1) $R_{e q}=20 \Omega$
$i=\frac{60}{20}=3 \mathrm{~A}$
Voltage through $10 \Omega=3 \times 10=30 \mathrm{~V}$
13. (4) $i=\frac{60}{20}=3 \mathrm{~A}$
14. (4) R_{eq} of circuit $=\frac{R \times 1}{R+1}+1$

$$
=\frac{R+R+1}{R+1}=\frac{2 R+1}{R+1}
$$

Current through battery $=15 \times \frac{R+1}{2 R+1}$
Power through battery $=$ Power dissipated through circuit $=$ VI
$\Rightarrow 150=\frac{15}{2 R+1} \cdot(R+1) 15$
$\Rightarrow 150=\frac{15 \times 15}{(2 R+1)}(R+1)$
$20 \mathrm{R}+10=15 \mathrm{R}+15$
$5 \mathrm{R}=5$
$\mathrm{R}=1$
15. (2)

Current through middle row $=\frac{100}{10}=10 \mathrm{~A}$
So current through bulb no $9=10 \mathrm{~A}$ also
Power dissipated $=i^{2} \mathrm{R}$

$$
=10^{2} \cdot 2=200 \mathrm{~W}
$$

16. (1)
17. (2) In an electrolyte there are positive and negative ions which drifts inside the electrolyte chemical when an electric field is applied onto it by some external potential difference.
18. (1) The current is steady that means the total amount of charge flowing through all the cross sections of the wire are same.
19. (2) When cells are arranged in parallel the current is divided in all the cell branches so current capacity of the equivalent cell increases.
20. (3) In parallel combination voltage across all resistors is equal and current is divided in inverse ratio of the resistance.
21. (4) $C_{\text {air }}=\frac{C_{\text {medium }}}{K}=\frac{C}{2}$
22. (4)
23. (4) $Q=(k C) V$
$=\left(\frac{5}{3} \times 90 \mu \mathrm{~F}\right)(20 \mathrm{~V})$
$=3000 \mathrm{pC}$
$=3 n C$
induced charges on dielectric
$Q_{i n d}=Q\left(1-\frac{1}{K}\right)=3 n C\left(1-\frac{3}{5}\right)=1.2 n C$
24. (4) Let R be resistance of each bulb. When the bulbs are connected in series, $\mathrm{R}_{\mathrm{S}}=3 \mathrm{R}$
$\therefore P_{S}=\frac{V^{2}}{R_{S}}=\frac{V^{2}}{3 R}$
When the bulbs are connected in parallel,
$\frac{1}{R_{P}}=\frac{1}{R}+\frac{1}{R}+\frac{1}{R}$ or $\mathrm{R}_{P}=\frac{R}{3}$
$\therefore P_{P}=\frac{V^{2}}{R_{P}}=\frac{V^{2}}{(R / 3)}=\frac{3 V^{2}}{R}$
Divide (ii) by (i), we get, $\frac{P_{P}}{P_{S}}=\frac{3 V^{2}}{R} \times \frac{3 R}{V^{2}}=9$

$$
P_{P}=9 P_{S}=9 \times 20 \mathrm{~W}=180 \mathrm{~W}
$$

25. (1)
$i_{g}=i \frac{S}{G+S} \Rightarrow 10 \times 10^{-3}=\frac{S}{100+S} \times 100 \times 10^{-3}$
$90 \mathrm{~S}=1000 \Rightarrow S=\frac{1000}{90}=11.11 \Omega$.
26. (3)
27. (1) $c=4 \pi \in_{0} R$

$$
=\frac{1}{9 \times 10^{9}} \cdot 2=2.2 \times 10^{-10} \mathrm{~F}
$$

28. (2) Charge on $1 \mu \mathrm{~F}=\mathrm{CV}=1 \times 10^{-6} \times 10$

$$
=10^{-6} \times 10=10 \mu \mathrm{C}
$$

charge on $3 \mu \mathrm{~F}=\mathrm{CV}=3 \times 10^{-6} \times 20=-60 \mu \mathrm{C}$
total charge $=-50 \mu \mathrm{C}$
Find charge on $1 \mu \mathrm{~F} \& 3 \mu \mathrm{~F} \rightarrow \mathrm{Q}_{1}, \mathrm{Q}_{2}$ respectively then $\frac{Q_{1}}{Q_{2}}=\frac{C_{1}}{C_{2}}$ since potential of both conductor are same
$\Rightarrow Q_{1}=\frac{C_{1}}{C_{1}+C_{2}}\left(Q_{1}+Q_{2}\right)=\frac{1}{4} \times-50=-12.5 \mu \mathrm{C}$
$\Rightarrow Q_{2}=\frac{C_{2}}{C_{1}+C_{2}}\left(Q_{1}+Q_{2}\right)=\frac{3}{4} \times-50=-37.5 \mu \mathrm{C}$
29. (4) Let's assume V be the voltage of battery then energy stored in position $1=$ $\frac{1}{2} \times 2 \times V^{2} \mu \mathrm{~J}=\mathrm{V}^{2} \mu \mathrm{~J}$

Initial charge on $2 \mu \mathrm{~F} \times \mathrm{V}=2 \mathrm{~V} \mu \mathrm{C}$
Let after connecting the common potential becomes
$V_{\text {comm }}=\frac{Q_{\text {total }}}{C_{\text {total }}}=\frac{2 V}{12}=\frac{V}{6} \mathrm{Volt}$
So final energy $=$
$\frac{1}{2} \times 2 \times\left(\frac{\mathrm{V}}{6}\right)^{2}+\frac{1}{2} \times 10 \times\left(\frac{V}{6}\right)^{2}=\frac{V^{2}}{6} \mu \mathrm{~J}$
energy dissipated $=V^{2}-\frac{V^{2}}{6}=\frac{5 V^{2}}{6}$
$\%$ energy dissipated $=\frac{5 V^{2}}{6 V^{2}} \times 100=83.33 \%$
30. (3) One capacitor is short circuited.

So net capacitance : $\frac{C}{2}+C=\frac{3 C}{2}$
31. (2)

$Q_{1}: Q_{2}: Q_{3}=C_{1}: C_{2}: C_{3}$
$Q_{1}=\frac{C_{1}}{C_{1}+C_{2}+C_{3}} \cdot\left(Q_{1}+Q_{2}+Q_{3}\right)$
$\Rightarrow Q_{1}=\frac{2}{8} \times 16 \mu \mathrm{C}=4 \mu \mathrm{C}$
32. (1) $C_{1}=\frac{\in_{0} A}{d}$
$C_{f}=\frac{\in_{0} A}{d-\frac{d}{2}+\frac{d}{2 \infty}}=\frac{2 \in_{0} A}{d}$

$$
\frac{C_{f}}{C_{i}}=\frac{2}{1}
$$

33. (1)
34. (2)
35. (4)

Eq. Capacitance (A \& B)
$=16 \mu \mathrm{~F}$

Section - B (Attempt Any 10 Questions)

36. (2) No current flows through the capacitor branch in steady state. Total current supplied by the battery

$$
i=\frac{6}{2.8+1.2}=\frac{3}{2}
$$

Current through 2Ω resistor $=\frac{3}{2} \times \frac{3}{5}=0.9 \mathrm{~A}$
37. (4) $V_{B}=V_{C}=V_{A}$

38. (1) For ohmic resistance $\mathrm{V} \propto i \Rightarrow V=R i$ (here R is constant)
39. (1) Slope of V-i curve at any point equals to resistance at that point. From the curve slope for $\mathrm{T}_{1}>$ slope for $\mathrm{T}_{2} \Rightarrow R_{T_{1}}>R_{T_{2}}$. Also at higher temperature resistance will be higher so $\mathrm{T}_{1}>\mathrm{T}_{2}$.
40. (2) According to Kirchoff's second law for a complete traversal of a closed loop the algebraic sum of changes in potential is zero, i.e., $\sum \Delta V=0$.

For n closed loops there will be $(n-1)$ equations.
41. (4)
42. (3) The potential difference is divided in inverse ratio of capacitance in series combination so we use
$V_{3 \mu F}=\frac{6 \times 120}{3+6}=80 \mathrm{~V}$
43. (2) In steady state, the capacitor branch acts like an open circuit. So the potential difference across C is the same which is there across resistance r_{2}, given as
$V_{r 2}=\frac{V r_{2}}{\left(r_{1}+r_{2}\right)}$
44. (2) The equivalent capacitance of the system shown in figure is given as

$$
\begin{aligned}
& C_{e q}=2 C=2 \frac{\in_{0} A}{d} \\
& \Rightarrow C_{e q}=\frac{2 \times 8.85 \times 10^{-12} \times 50 \times 10^{-4}}{3 \times 10^{-3}}
\end{aligned}
$$

$\Rightarrow C_{e q}=2.95 \times 10^{-11} \mathrm{~F}$
The energy stored between plates is given as
$\mathrm{U}=\frac{1}{2} C_{e q} V^{2}$
$\Rightarrow U=\frac{1}{2} \times 2.95 \times 10^{-11} \times 12^{2} J$
$\Rightarrow U=2.1 \times 10^{-9} J$
45. (4) For the series combination of the top branch we have
$\frac{V_{1 \mu F}}{V_{1.5 \mu F}}=\frac{1.5}{1} \Rightarrow V_{1 \mu F}=\left(\frac{1.5}{1.5+1}\right)(30)=18 V$
For the series combination of the lower branch we have
$\frac{V_{2.5 \mu F}}{V_{0.5 \mu F}}=\frac{0.5}{2.5}=\frac{1}{5}$
$\Rightarrow V_{2.5 \mu F}=\left(\frac{1}{1+6}\right)(30)=5 \mathrm{~V}$
$\Rightarrow\left|V_{a b}\right|=V_{1 \mu F}-V_{2.5 \mu F}=13 \mathrm{~V}$
46. (1) 20Ω is removed since wheat stone bridge
res. $=\frac{18 \times 9}{18+9}=6 \Omega$
$R_{e q}$ of circuit $=\frac{6 \times 6}{6+6}+1$

$$
=4 \Omega
$$

47. (4) at S.S, capacitor offers infinite resistance

So current through $1 \Omega=\frac{20}{4}=5 \mathrm{~A}$
P.D. through capacitor $=5 \times 1=5 \mathrm{~V}$

Charge $\mathrm{Q}=\mathrm{CV}=1 \mu \mathrm{~F} \times 5 \mathrm{~V}=5 \mu \mathrm{C}$
48. (4) Circuit current flows in clockwise and it is given as
$i=\frac{10-5}{2.5+2.5+40}=\frac{1}{9} \mathrm{~A}$

Writing equation of potential drops from B to A gives
$V_{B}-15 i-25 i=V_{A}$
$\Rightarrow V_{A}-V_{B}-40 i=-\frac{40}{9} V$
49. (4) In the figure shown below at null deflection we have $V_{A C}=V_{D E}$

$$
\begin{array}{rlrl}
\Rightarrow & & i\left(R_{\mathrm{AC}}\right) & =E=1.2 \\
\Rightarrow & \left(\frac{2}{4+1}\right)\left(\frac{4}{100} \times l\right) & =1.2 \\
\Rightarrow & & l & =75 \mathrm{~cm}
\end{array}
$$

50.

$$
\text { (3) } R=\rho \cdot \frac{l}{A} \mathrm{So} \mathrm{R} \propto l
$$

$R_{\text {final }}=R_{0} \times 1.25$
$P_{\text {initial }}=\frac{V^{2}}{R_{0}}$
$P_{\text {final }}=\frac{V^{2}}{R_{0} \times 1.25}$
Since voltage of supply wil be smae.
decrement $=\frac{P_{\text {final }}-P_{\text {initial }}}{P_{\text {initial }}} \times 100$
$\frac{\frac{V^{2}}{R_{0} \times 1.25}-\frac{V^{2}}{R_{0}}}{\frac{V^{2}}{R_{0}}} \times 100$
$\Rightarrow\left(\frac{100}{125}-1\right) \times 100=\frac{-25}{125} \times 100=-20 \%$

CHEMISTRY

SECTION - A (35 Questions)

51. (2)
$\mathrm{R}=\rho \frac{l}{\mathrm{~A}}$
$\frac{1}{\rho}=\frac{1}{\mathrm{R}} \times \frac{l}{\mathrm{~A}}$
$\kappa=\frac{\mathrm{G}^{*}}{\mathrm{R}}$
52. (1)

$$
\mathrm{E}_{\text {cell }}=0
$$

53. (4)

Compounds of active metals $(\mathrm{Zn}, \mathrm{Na}, \mathrm{Mg})$ are reducible by H_{2} whereas those of noble metals $(\mathrm{Cu}$, $\mathrm{Ag}, \mathrm{Au})$ are not reducible.
54. (4)

Mn
55. (4)
$\Lambda_{\mathrm{NaCl}}^{\circ}$
56. (2)

Kohlrausch's law states that at infinite dilution, each ion makes definite contribution to equivalent conductance of an electrolyte whatever be the nature of the other ion of the electrolyte.
57. (3)
R.P. of $\mathrm{C}>\mathrm{A}>\mathrm{B}$.
58. (3)
$\mathrm{E}_{\text {cell }}$ is an intensive property while $\Delta \mathrm{G}$ of cell reaction is an extensive property
59. (4)

EMF of a cell = Reduction potential of cathode

- Reduction potential of anode
$=$ Reduction potential of cathode
+ Oxidation potential of anode
= Oxidation potential of anode
-Oxidation potential of cathod.

60. (1)

Strong electrolytes are completely ionised at all concentrations. On increasing dilution the no. of ions remains the same but the ionic mobility increases and the equivalent conduction increases.
61. (3)
$\mathrm{E}_{\text {cell }}=0-\frac{0.06}{2} \log \frac{\mathrm{C}_{1}}{\mathrm{C}_{2}}>0$ when $\mathrm{C}_{1}<\mathrm{C}_{2}$
62. (3)
$\mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cell }}^{\mathrm{o}}-\frac{0.059}{2} \log \left\{\frac{\left[\mathrm{Sn}^{2+}\right]}{\left[\mathrm{Ag}^{+}\right]^{2}}\right\}$
63. (4)

Statement-1 is false, statement-2 is true
64. (3)

Statement-1 is true, statement-2 is false
65. (1)
PbSO_{4} anode is reduced to Pb
66. (3)
$1=\eta \times 3 \Rightarrow \eta=\frac{1}{3}$
67. (1)
$\Delta_{\mathrm{r}} \mathrm{G}=-2.303 \mathrm{RT} \log \mathrm{K}$
68. (3)

Gold has higher reduction potential than iron
69. (1)

At anode $: \mathrm{Sn} \longrightarrow \mathrm{Sn}^{2+}+2 \mathrm{e}^{-}$is more spontaneous
70. (4)

Pure copper as cathode and impure sample as anode
71. (4)

Dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ using Cu electrode
72. (2)
(a-u), (b-v), (c-w), (d-x)
73. (1)

Cr
74. (1)
-A
75. (4)

There is no reaction
76. (3)

Both are correct
77. (1)
H_{2} is anode and Cu is cathode
78. (3)

Remains same
79. (3)
O_{2} at anode and Cu at cathode
80. (1)

Anode is negative electrode
81. (1)
E^{0} is an intensive property.
82. (3)

Oxygen
83. (3)

Both (1) and (2)
84. (3)
R.A. itself gets oxidised easily, i.e., Mg.
85. (2)
0.1 MHCl

SECTION - B (Attempt Any 10 Questions)

86. (3)
```
(a-q), (b-r), (c-q, s), (d-p,r)
```

87. (2)

\[

\]

$\mathrm{K}_{\mathrm{a}}=\frac{\mathrm{c} \alpha^{2}}{1-\alpha}$; where $\alpha=\frac{\Lambda_{\mathrm{m}}}{\Lambda_{\mathrm{m}}^{\infty}}$
$\therefore \quad \mathrm{K}_{\mathrm{a}}=\frac{\mathrm{x}\left(\frac{\Lambda_{\mathrm{m}}}{\Lambda_{\mathrm{m}}^{\infty}}\right)^{2}}{\left(1-\frac{\Lambda_{\mathrm{m}}}{\Lambda_{\mathrm{m}}^{\infty}}\right)}$
$=\frac{c \Lambda_{\mathrm{m}}^{2}}{\Lambda_{\mathrm{m}}^{\infty}\left(\Lambda_{\mathrm{m}}^{\infty}-\Lambda_{\mathrm{m}}\right)}$
88. (3)

$$
\frac{2}{\frac{197}{3}}=\frac{\mathrm{i} \times 20 \times 60}{96500} \Rightarrow \mathrm{i}=2.449 \mathrm{~A}
$$

89. (2)

A, D
90. (4)
$\mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cell }}^{\mathrm{o}}-\frac{0.059}{\mathrm{n}} \log \mathrm{Q}$
$=1.67-\frac{0.059}{4} \log 10^{7}$
$=1.67-\frac{0.059}{4} \times 7$
$=1.67-0.103$
$=1.567 \mathrm{~V}$
91. (1)
$\mathrm{Br}^{-}<\mathrm{Fe}^{2+}<\mathrm{Al}$
92. (2)

Species having higher reduction potential will have greater oxidising power.
93. (4)
$\left(\mathrm{n}_{\mathrm{Ag}}\right) \times 1=\left(\mathrm{n}_{\mathrm{Cu}}\right) \times 2=\left(\mathrm{n}_{\mathrm{Au}}\right) \times 3$
94. (4)

$$
\frac{\left[x_{1}+x_{2}-2 x_{3}\right]}{2}
$$

95. (3)
$\Delta \mathrm{G}^{\mathrm{o}}=-\mathrm{nFE}{ }^{0}=-2.303 \mathrm{RT} \log _{10} \mathrm{~K}$
$\Rightarrow \mathrm{E}^{\mathrm{o}}=\frac{0.0591}{2} \log _{10}\left(2 \times 10^{19}\right)=+0.57 \mathrm{~V}$
96. (4)

For a galvanic cell, $\Delta \mathrm{G}<0$ or $\mathrm{E}_{\text {cell }}>0$ and $\mathrm{Q}<\mathrm{K}, \Delta \mathrm{G}^{0}<0$.
97. (4)

According to Faraday's second law,
$\frac{\mathrm{W}_{\mathrm{Ag}}}{\mathrm{E}_{\mathrm{Ag}}}=\frac{\mathrm{W}_{\mathrm{O}_{2}}}{\mathrm{E}_{\mathrm{O}_{2}}}$ or $\frac{\mathrm{W}_{\mathrm{Ag}}}{108}=\frac{\frac{5600}{22400} \times 32}{8}$
or $\frac{\mathrm{W}_{\mathrm{Ag}}}{108}=\frac{8}{8} \Rightarrow \mathrm{~W}_{\mathrm{Ag}}=108 \mathrm{~g}$
98. (2)

Statement-1 is true, statement-2 is true, statement2 is not a correct explanation for statement-1
99. (3)
$\mathrm{E}_{\text {R.P. }}=-\frac{0.06}{2} \log \left\{\frac{\mathrm{P}_{\mathrm{H}_{2}}}{\left[\mathrm{H}^{+}\right]^{2}}\right\}<0$ when $\mathrm{P}_{\mathrm{H}_{2}}>\left[\mathrm{H}^{+}\right]^{2}$
100. (2)

Decreases by 59 mV

