

Answer Key Version - Q (NEET FRESH All Batches)

		Physics	6		Chemistry					
Sec.A	11. 4	22. 2	33. 2	43. 1	Sec. A	61. 2	72. 1	83. 3	93. 3	
01. 2	12. 3	23. 1	34. 4	44. 1	51. 1	62. 3	73. 3	84. 3	94. 2	
02. 1	13. 3	24. 2	35. 3	45. 2	52. 3	63. 3	74. 1	85. 1	95. 4	
03. 1	14. 4	25. 3	Sec. B	46. 4	53. 3	64. 4	75. 4	Sec. B	96. 1	
04. 2	15. 2	26. 4	36.1501900	1470153)er	tfie 5 4. 3	65. 1 _®	76. 4	86. 4	97. 2	
05. 4	16. 4	27. 4	37. 4	48. 2	55. 2	66. 3	77. 2	87. 4	98. 4	
06. 2	17. 1	28. 4	38. 4	49. 2	56. 2	67. 3	78. 1	88. 2	99. 4	
07. 2	18. 4	29. 4	39. 4	50. 4	57. 1	68. 4	79. 1	89. 3	100. 3	
08. 4	19. 4	30. 1	40. 3	KNEI	58. 4	69. 3	80. 4	90. 2		
09. 4	20. 2	31. 3	41. 2		59. 4	70. 1	81. 3	91. 3		
10. 2	21. 1	32. 1	42. 4		60. 4	71. 3	82. 1	92. 2		
Biology										
Part-I	110. 3	121. 4	132. 4	142. 3	Part-II	160. 1	171. 3	182. 1	192. 3	
Sec.A	111. 3	122. 2	133. 2	143. 3	Sec.A	161. 3	172. 1	183. 3	193. 3	
101. 1	112. 2	123. 3	134. 1	144. 1	151. 2	162. 2	173. 1	184. 1	194. 2	
102. 3	113. 1	124. 4	135. 2	145. 4	152. 4	163. 4	174. 3	185. 4	195. 3	
103. 3	114. 4	125.4	Sec.B	146. 2	153. 3	164. 1	175. 3	Sec. B	196. 3	
104. 2	115. 3	126. 3	136. 4	147. 3	154. 2	165. 4	176. 2	186. 2	197. 2	
105. 4	116. 4	127. 2	137. 4	148. 2	155. 2	166. 1	177. 3	187.4	198. 3	
106. 4	117. 3	128. 1	138. 2	149. 3	156. 3	167. 1	178. 2	188. 1	199. 3	
107. 3	118. 2	129. 4	139. 4	150. 2	157. 4	168. 3	179. 2	189. 2	200. 3	
108. 2	119. 3	130. 4	140. 3		158. 2	169. 2	180. 4	190. 3		
109. 1	120. 2	131. 4	141. 3		159. 2	170. 3	181. 1	191. 4		

2

$$\frac{1}{C_{a-c}} = \frac{1}{C_{a-b}} + \frac{1}{C_{b-c}}$$

$$\Rightarrow \frac{1}{C} = \frac{d}{\epsilon_A} \frac{d}{A(K_{K_1+K_2})} + \frac{d}{2K_3 \epsilon_0 A}$$

$$\Rightarrow \frac{d}{\epsilon_0} \frac{d}{A \cdot K} = \frac{d}{\epsilon_0} \frac{d}{A \cdot (K_1 + K_2)} + \frac{d}{\epsilon_0} \frac{d}{A \cdot 2K_3}$$

$$\Rightarrow \frac{1}{K} = \frac{1}{K_1 + K_2} + \frac{1}{2K_3}$$
(4)

12. **(3)** $R_0 + R_0 \times \frac{40}{100} = R_0 [1 + \infty (T - 0)]$ $1 + 0.4 = 1 + 3.92 \times 10^{-3} \times T$ $\Rightarrow 0.4 = 3.92 \times 10^{-3} \times T$ $\frac{0.4}{3.92 \times 10^{-3}} = T$ $100 \ ^{\circ}\text{C} = T$

11.

 (3) Because bulb Q is short circuited so no current will pass through Q.

14. (4)
$$\rightarrow A$$
 $\rightarrow B$
 $10 V$
 $V_A - V_B = 10 + 2.r$
 $\Rightarrow 17 = 10 + 2r$
 $\Rightarrow 7 = 2r \Rightarrow r = 3.5 \Omega$
15. (2) $\rightarrow 3$ $\rightarrow 1$ $\rightarrow 3$ $\rightarrow 2$ $\rightarrow 3$
 $15.$ (2) $\rightarrow 3$ $\rightarrow 1$ $\rightarrow 3$ $\rightarrow 2$ $\rightarrow 3$

16. (4) 5, 12 & 17 are short circuited no current will pass through these bulbs.

I = 5A

17. (1) $R_{eq} = 20 \ \Omega$

$$i = \frac{60}{20} = 3A$$

Voltage through $10 \Omega = 3 \times 10 = 30 V$

18. **(4)** $i = \frac{60}{20} = 3A$

0

19. **(4)** R_{eq} of circuit = $\frac{R \times 1}{R+1} + 1$

$$= \frac{R+R+1}{R+1} = \frac{2R+1}{R+1}$$

Current through battery = $15 \times \frac{R+1}{2R+1}$

Power through battery = Power dissipated through circuit = VI

$$\Rightarrow 150 = \frac{15}{2R+1} \cdot (R+1)15$$
$$\Rightarrow 150 = \frac{15 \times 15}{(2R+1)} (R+1)$$
$$20R+10 = 15 R+15$$
$$5R = 5$$
$$R = 1$$

Current through middle row
$$=\frac{100}{10}=10$$
A

So current through bulb no 9 = 10 A also Power dissipated = i^2 R

$$= 10^2$$
. 2 = 200 W

21. (1)

- 22. (2) In an electrolyte there are positive and negative ions which drifts inside the electrolyte chemical when an electric field is applied onto it by some external potential difference.
- 23. (1) The current is steady that means the total amount of charge flowing through all the cross sections of the wire are same.

NEET FRESH 2023-24

- 24. (2) When cells are arranged in parallel the current is divided in all the cell branches so current capacity of the equivalent cell increases.
- 25. (3) In parallel combination voltage across all resistors is equal and current is divided in inverse ratio of the resistance.

26. **(4)**
$$C_{air} = \frac{C_{medium}}{K} = \frac{C}{2}$$

27. (4)

28. (4)
$$Q = (kC)V$$

= $\left(\frac{5}{3} \times 90\mu F\right)(20V)$
= 3000 pC
= $3nC$

induced charges on dielectric

$$Q_{ind} = Q\left(1 - \frac{1}{K}\right) = 3nC\left(1 - \frac{3}{5}\right) = 1.2 nC$$

29. (4) Let R be resistance of each bulb. When the bulbs are connected in series, $R_s = 3R$

$$\therefore P_s = \frac{V^2}{R_s} = \frac{V^2}{3R} \qquad \dots (i)$$

When the bulbs are connected in parallel,

$$\frac{1}{R_p} = \frac{1}{R} + \frac{1}{R} + \frac{1}{R} \text{ or } R_p = \frac{R}{3}$$

$$\therefore P_p = \frac{V^2}{R_p} = \frac{V^2}{(R/3)} = \frac{3V^2}{R} \qquad \dots (ii)$$

Divide (ii) by (i), we get, $\frac{P_p}{P_s} = \frac{3V^2}{R} \times \frac{3R}{V^2} = 9$

$$P_P = 9P_S = 9 \times 20W = 180W$$

30. (1)

$$i_g = i \frac{S}{G+S} \Longrightarrow 10 \times 10^{-3} = \frac{S}{100+S} \times 100 \times 10^{-3}$$

$$90 \text{ S} = 1000 \implies S = \frac{1000}{90} = 11.11\Omega$$
.

31. **(3)**

32. (1)
$$c = 4\pi \in_0 R$$

0

$$= \frac{1}{9 \times 10^9} \cdot 2 = 2.2 \times 10^{-10} \, \text{F}$$

33. (2) Charge on 1 μ F = CV = 1 × 10⁻⁶ × 10

$$= 10^{-6} \times 10 = 10 \ \mu C$$

charge on 3 μ F = CV = 3×10⁻⁶ × 20 = -60 μ C

total charge = $-50 \,\mu C$

Find charge on 1 μ F & 3 μ F \rightarrow Q₁, Q₂ respectively

then $\frac{Q_1}{Q_2} = \frac{C_1}{C_2}$ since potential of both conductor are same

$$\Rightarrow Q_1 = \frac{C_1}{C_1 + C_2} (Q_1 + Q_2) = \frac{1}{4} \times -50 = -12.5 \,\mu\text{C}$$

$$\Rightarrow Q_2 = \frac{C_2}{C_1 + C_2} (Q_1 + Q_2) = \frac{3}{4} \times -50 = -37.5 \,\mu\text{C}$$

34. (4) Let's assume V be the voltage of battery then energy stored in position $1 = \frac{1}{2} \times 2 \times V^2 \mu J = V^2 \mu J$

Initial charge on $2\mu F \times V \,{=}\, 2V\mu C$

Let after connecting the common potential becomes

$$V_{comm} = \frac{Q_{total}}{C_{total}} = \frac{2V}{12} = \frac{V}{6}$$
 Volt

So final energy =

$$\frac{1}{2} \times 2 \times \left(\frac{V}{6}\right)^2 + \frac{1}{2} \times 10 \times \left(\frac{V}{6}\right)^2 = \frac{V^2}{6} \mu J$$

energy dissipated = $V^2 - \frac{V^2}{6} = \frac{5V^2}{6}$

% energy dissipated =
$$\frac{5V^2}{6V^2} \times 100 = 83.33\%$$

35. (3) One capacitor is short circuited.

So net capacitance :
$$\frac{C}{2} + C = \frac{3C}{2}$$

Section - B (Attempt Any 10 Questions)

IIB≯

36. (1) 20_{Ω} is removed since wheat stone bridge

res. =
$$\frac{18 \times 9}{18 + 9} = 6\Omega$$

R_{eq} of circuit = $\frac{6 \times 6}{6 + 6} + 1$
= 4Ω

37. (4) at S.S, capacitor offers infinite resistance

So current through
$$1_{\Omega} = \frac{20}{4} = 5A$$

P.D. through capacitor = $5 \times 1 = 5V$

Charge Q = CV = 1
$$\mu$$
F × 5V = 5 μ C

38. **(4)** Circuit current flows in clockwise and it is given as

$$i = \frac{10-5}{2.5+2.5+40} = \frac{1}{9}A$$

Writing equation of potential drops from B to A gives

$$V_B - 15i - 25i = V_A \quad \Rightarrow V_A - V_B - 40i = -\frac{40}{9}V$$

39. **(4)** In the figure shown below at null deflection we have $V_{AC} = V_{DE}$

$$\Rightarrow \qquad i(R_{AC}) = E = 1.2$$
$$\Rightarrow \qquad \left(\frac{2}{4+1}\right) \left(\frac{4}{100} \times l\right) = 1.2$$
$$\Rightarrow \qquad l = 75 \text{ cm}$$

- 40. (3) $R = \rho \cdot \frac{l}{A}$ So R $\propto l$
 - $R_{final} = R_0 \times 1.25$

$$P_{initial} = \frac{V^2}{R_0}$$

$$P_{final} = \frac{V^2}{R_0 \times 1.25}$$

Since voltage of supply wil be smae.

decrement =
$$\frac{P_{final} - P_{initial}}{P_{initial}} \times 100$$
$$\frac{V^2}{\frac{R_0 \times 1.25}{\frac{V^2}{R_0}} - \frac{V^2}{R_0}}{\times 100} \times 100$$
$$\Rightarrow \left(\frac{100}{125} - 1\right) \times 100 = \frac{-25}{125} \times 100 = -20\%$$

41. (2) No current flows through the capacitor branch in steady state. Total current supplied by the battery

$$i = \frac{6}{2.8 + 1.2} = \frac{3}{2}$$

42.

Current through 2_{Ω} resistor $= \frac{3}{2} \times \frac{3}{5} = 0.9$ A

$$(4) V_{B} = V_{C} = V_{A}$$

- 43. (1) For ohmic resistance $V \propto i \Rightarrow V = Ri$ (here R is constant)
- 44. (1) Slope of V-i curve at any point equals to resistance at that point. From the curve slope for $T_1 >$ slope for $T_2 \Rightarrow R_{T_1} > R_{T_2}$. Also at higher temperature resistance will be higher so $T_1 > T_2$.
- 45. (2) According to Kirchoff's second law for a complete traversal of a closed loop the algebraic sum of changes in potential is zero, *i.e.*, $\sum \Delta V = 0$.

For *n* closed loops there will be (n-1) equations.

- 46. **(4)**
- 47. (3) The potential difference is divided in inverse ratio of capacitance in series combination so we use

$$V_{3\mu F} = \frac{6 \times 120}{3+6} = 80 \text{ V}$$

48. **(2)**

In steady state, the capacitor branch acts like an open circuit. So the potential difference across C is the same which is there across resistance r_2 , given as

$$V_{r2} = \frac{Vr_2}{(r_1 + r_2)}$$

49. (2) The equivalent capacitance of the system shown in figure is given as

$$C_{eq} = 2C = 2\frac{\epsilon_0 A}{d}$$

$$\Rightarrow C_{eq} = \frac{2 \times 8.85 \times 10^{-12} \times 50 \times 10^{-4}}{3 \times 10^{-3}}$$

$$\Rightarrow C_{eq} = 2.95 \times 10^{-11} \text{ F}$$

The energy stored between plates is given as

$$U = \frac{1}{2}C_{eq}V^{2}$$

$$\Rightarrow U = \frac{1}{2} \times 2.95 \times 10^{-11} \times 12^{2}J$$

$$\Rightarrow U = 2.1 \times 10^{-9}J$$

50. (4) For the series combination of the top branch we have

$$\frac{V_{1\mu F}}{V_{1.5\mu F}} = \frac{1.5}{1} \implies V_{1\mu F} = \left(\frac{1.5}{1.5+1}\right)(30) = 18V$$

For the series combination of the lower branch we have

$$\frac{V_{2.5\mu F}}{V_{0.5\mu F}} = \frac{0.5}{2.5} = \frac{1}{5}$$
$$\Rightarrow V_{2.5\mu F} = \left(\frac{1}{1+6}\right)(30) = 5V$$
$$\Rightarrow |V_{ab}| = V_{1\mu F} - V_{2.5\mu F} = 13V$$

CHEMISTRY

SECTION - A (35 Questions)

51. **(1)**

E° is an intensive property.

52. **(3)**

Oxygen

Both (1) and (2)

54. **(3)**

R.A. itself gets oxidised easily, i.e., Mg.

55. **(2)** 0.1M HCl

 $R = \rho \frac{l}{A}$ $\frac{1}{\rho} = \frac{1}{R} \times \frac{l}{A}$ $\kappa = \frac{G^*}{R}$ (1)

$$E_{cell} = 0$$

58. **(4)**

57.

Compounds of active metals (Zn, Na, Mg) are reducible by H_2 whereas those of noble metals (Cu, Ag, Au) are not reducible.

59. (4)

Mn

60. **(4)**

 $\Lambda^{o}_{\text{NaCl}}$

61. **(2)**

Kohlrausch's law states that at infinite dilution, each ion makes definite contribution to equivalent conductance of an electrolyte whatever be the nature of the other ion of the electrolyte.

NE	CET FRESH 2023-24	2				
62.	(3)	73.	(3)			
	R.P. of $C > A > B$.		Gold has higher reduction potential than iron			
63.	(3)	74.	(1)			
	E_{cell} is an intensive property while ΔG of cell reaction is an extensive property		At anode : $Sn \longrightarrow Sn^{2+} + 2e^{-}$ is more spontaneous			
64.	(4)	75.	(4)			
	EMF of a cell = Reduction potential of cathode		Pure copper as cathode and impure sample as			
	-Reduction potential of anode		anode			
	= Reduction potential of cathode	76.	(4)			
	+ Oxidation potential of anode		Dilute H ₂ SO ₄ using Cu electrode			
	=Oxidation potential of anode	77.	(2)			
	-Oxidation potential of cathod.		(a-u), (b-v), (c-w), (d-x)			
65.	(1)	78.	(1)			
S	Strong electrolytes are completely ionised at all		Cr			
	concentrations. On increasing dilution the no. or		(1)			
	increases and the equivalent conduction increases.		-A			
66.	(3)	80.	(4)			
	$E_{cell} = 0 - \frac{0.06}{2} \log \frac{C_1}{C_2} > 0$ when $C_1 < C_2$		There is no reaction			
			(3)			
67.	(3)		Both are correct			
	$E_{cell} = E_{cell}^{\circ} - \frac{0.059}{2} \log \left\{ \frac{[Sn^{2+}]}{r + r^2} \right\}$		(1)			
			H_2 is anode and Cu is cathode			
	2 [[Ag]]	83.	(3)			
68.	(4)		Remains same			
	Statement-1 is false, statement-2 is true	84.	(3)			
<u>69</u> .	(3)		O ₂ at anode and Cu at cathode			
	Statement-1 is true, statement-2 is false	85.	(1)			
70.	(1)		Anode is negative electrode			
	$PbSO_4$ anode is reduced to Pb					
71.	(3)	S	ECTION - B (Attempt Any 10 Questions)			
	$1 = \eta \times 3 \implies \eta = \frac{1}{3}$	86.	(4)			
72.	(1)		For a galvanic cell, $\Delta G < 0$ or $E_{cell} > 0$ and $Q < K$, $\Delta G^{\circ} < 0$.			
	$\Delta_{\rm r}G = -2.303 {\rm RT} \log {\rm K}$	87.	(4)			

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

According to Faraday's second law,

$$\frac{W_{Ag}}{E_{Ag}} = \frac{W_{O_2}}{E_{O_2}} \text{ or } \frac{W_{Ag}}{108} = \frac{\frac{5600}{22400} \times 32}{8}$$

or
$$\frac{W_{Ag}}{108} = \frac{8}{8} \Longrightarrow W_{Ag} = 108 \text{ g}$$

88. **(2)**

Statement-1 is true, statement-2 is true, statement-2 is not a correct explanation for statement-1

89. **(3)**

$$E_{R.P.} = -\frac{0.06}{2} \log \left\{ \frac{P_{H_2}}{\left[H^+\right]^2} \right\} < 0 \text{ when } P_{H_2} > \left[H^+\right]^2$$

90. **(2)**

Decreases by 59 mV

91. **(3)**

(a-q), (b-r), (c-q, s), (d-p, r)

92. **(2)**

$$HA(aq) \rightleftharpoons H^{+}(aq) + A^{-}(aq)$$

At eqm. $c(1-\alpha) \qquad c\alpha \qquad c\alpha$

$$K_a = \frac{c\alpha^2}{1-\alpha}$$
; where $\alpha = \frac{\Lambda_m}{\Lambda_m^{\infty}}$

$$\therefore \quad \mathbf{K}_{a} = \frac{\mathbf{x} \left(\frac{\Lambda_{m}}{\Lambda_{m}^{\infty}}\right)^{2}}{\left(1 - \frac{\Lambda_{m}}{\Lambda_{m}^{\infty}}\right)}$$

$$=\frac{c\Lambda_{\rm m}^2}{\Lambda_{\rm m}^\infty(\Lambda_{\rm m}^\infty-\Lambda_{\rm m})}$$

93. **(3)**

$$\frac{2}{\frac{197}{3}} = \frac{i \times 20 \times 60}{96500} \Longrightarrow i = 2.449 \text{ A}$$

94. (2)
A, D
95. (4)

$$E_{cell} = E_{cell}^{o} - \frac{0.059}{n} \log Q$$

 $= 1.67 - \frac{0.059}{4} \log 10^{7}$
 $= 1.67 - \frac{0.059}{4} \times 7$
 $= 1.67 - 0.103$
 $= 1.567 V$
96. (1)

$$Br^{-} < Fe^{2+} < Al$$

Species having higher reduction potential will have greater oxidising power.

98. **(4)**

$$(n_{Ag}) \times 1 = (n_{Cu}) \times 2 = (n_{Au}) \times 3$$

99. (4)

$$\frac{[x_1 + x_2 - 2x_3]}{2}$$

100. **(3)**

$$\Delta G^{\circ} = -nFE^{\circ} = -2.303 RT \log_{10} K$$

$$\Rightarrow E^{\circ} = \frac{0.0591}{2} \log_{10}(2 \times 10^{19}) = +0.57 \,\mathrm{V}$$