Answer Key Version - Q (NEET FRESH All Batches)

Physics					Chemistry				
Sec. A	11. 1	22. 4	33. 2	43. 2	Sec. A	61. 4	72. 4	83. 3	93. 4
01. 2	12. 2	23. 1	34. 1	44. 3	51. 2	62. 2	73. 1	84. 4	94. 4
02. 1	13. 3	24. 1	35. 1	45. 2	52. 2	63. 1	74. 3	85. 2	95. 4
03. 2	14. 1	25. 2	Sec. B	46. 2	53. 1	64. 2	75. 3	Sec. B	96. 3
04. 1	15. 1	26. 1	36. 5 C300	47.153	54. 2	65. 3_{\odot}	76. 1	86. 1	97. 1
05. 1	16. 1	27. 4	37. 4	48. 1	55. 2	66. 1	77. 3	87. 3	98. 3
06. 1	17. 1	28. 2	38. 1	49. 1	56. 2	67. 3	78. 3	88. 4	99. 4
07. 3	18. 4	29. 1	39. 4	50. 4	57. 2	68. 3	79. 3	89. 3	100. 3
08. 4	19. 2	30. 2	40.11	K	58. 4	69. 4	80. 3	90. 1	
09. 4	20. 1	31. 1	41. 4		59. 3	70. 1	81. 2	91. 3	
10. 4	21. 1	32. 2	42. 1		60. 1	71. 2	82. 3	92. 3	
Biology									
$\begin{aligned} & \text { Part-I } \\ & \text { Sec.A } \end{aligned}$	110. 3	121. 4	132. 3	142. 2	Part-II Sec.A	160. 2	171. 2	182. 4	192. 4
	111. 4	122. 4	133. 3	143. 3		161. 3	172. 4	183. 2	193. 2
101. 3	112. 4	123. 1	134. 3	144. 2	151. 4	162. 1	173. 3	184. 4	194. 2
102. 2	113. 3	124. 2	135. 2	145. 2	152. 4	163. 3	174. 3	185. 4	195. 4
103. 1	114. 1	125. 2	Sec.B	146. 1	153. 2	164. 3	175. 3	Sec. B	196. 4
104. 3	115. 4	126. 4	136. 4	147. 2	154. 2	165. 4	176. 1	186. 4	197. 4
105. 3	116. 4	127. 4	137. 3	148. 2	155. 2	166. 2	177. 1	187. 4	198. 1
106. 4	117. 4	128. 1	138. 1	149. 3	156. 1	167. 2	178. 3	188.3	199. 2
107. 2	118. 3	129. 1	139. 2	150. 4	157. 2	168. 2	179. 1	189. 4	200. 3
108. 1	119. 2	130. 2	140. 1		158. 3	169. 1	180. 1	190. 4	
109. 1	120. 4	131. 3	141. 1		159. 4	170. 4	181. 3	191. 1	

PHYSICS

SECTION - A (35 Questions)

1. (2) $\frac{d Q}{d t}=\frac{d Q_{1}}{d t}+\frac{d Q_{2}}{d t}$

$$
\begin{aligned}
& \frac{K\left(A_{1}+A_{2}\right)\left(\theta_{1}-\theta_{2}\right)}{d}=\frac{K_{1} A_{1}\left(\theta_{1}-\theta_{2}\right)}{d}+\frac{K_{2} A_{2}\left(\theta_{1}-\theta_{2}\right)}{d} \\
& \therefore K=\frac{K_{1} A_{1}+K_{2} A_{2}}{A_{1}+A_{2}} .
\end{aligned}
$$

2. (1) $\Delta U=\Delta Q=m c \Delta T$

$$
=\frac{100}{1000} \times 4184(50-30) \approx 8.4 \mathrm{~kJ}
$$

3. (2) Original value of circumference, $l=2 \pi R$
$\therefore \Delta l=l \alpha \theta=(2 \pi R) \alpha \theta$
4. (1) $\rho_{200}=\rho_{0}\left(1-\gamma_{m} \Delta T\right)$

$$
=13.6\left(1-0.18 \times 10^{-3} \times 200\right)=13.11 \mathrm{~g} / \mathrm{cc} .
$$

5. (1) Let Q be the temperature at a distance x from hot end of bar. Let Q is the temperature of hot end.
The heat flow rate is given by $\frac{d Q}{d t}=\frac{k A\left(\theta_{1}-\theta\right)}{x}$
$\Rightarrow\left(\theta_{1}-\theta\right)=\frac{x}{k A} \frac{d Q}{d t} \Rightarrow \theta=\theta_{1}-\frac{x}{k A} \frac{d Q}{d t}$
Thus, the graph of Q versus x is a straight line with a positive intercept and a negative slope.
The above equation can be graphically represented by option (1).
6. (1)
7. (3)
8. (4) $\Delta Q_{\text {given }}=\Delta Q_{\text {taken }}$
$m C\left(2 T-T_{1}\right)=\frac{m}{2} \times 2 C \times\left(T_{1}-T\right) \Rightarrow T_{1}=\frac{3}{2} T$.
9. (4) Fahrenheit has 180 divisions, Celsius \& Kelvin have 100 and Reumur has 80 divisions.
10. (4) From Stefan's law, energy radiated by sun per second $E=\sigma A T^{4}$;
$\therefore A \propto R^{2}$
$\therefore E \propto R^{2} T^{4}$
$\therefore \frac{E_{2}}{E_{1}}=\frac{R_{2}^{2} T_{2}^{4}}{R_{1}^{2} T_{1}^{4}}$
put $R_{2}=2 R, R_{1}=R ; T_{2}=2 T, T_{1}=T$
$\Rightarrow \frac{E_{2}}{E_{1}}=\frac{(2 R)^{2}(2 T)^{4}}{R^{2} T^{4}}=64$.
11. (1) Change in temp. is equal in Kelvin and ${ }^{\circ} \mathrm{C}$.
12. (2) $t=\frac{P_{t}-P_{0}}{P_{100}-P_{0}} \times 100=\frac{70-50}{90-50} \times 100=50^{\circ} \mathrm{C}$.
13. (3)
14. (1) Let the temperature of the mixture be $t^{0} \mathrm{C}$, Heat lost $=$ Heat gain
$0.1 \times 10^{3} \times\left(80^{\circ}-\mathrm{t}\right)=0.3 \times 10^{3} \times\left(\mathrm{t}-60^{\circ}\right)$
$\frac{1}{3}=\frac{t-60}{80-t} \Rightarrow 80-t=3 t-180$
$4 t=180+80 \Rightarrow t=\frac{260}{4}=65^{\circ} \mathrm{C}$
15. (1) Same amount of heat is supplied to copper and water so, $m_{c} s_{c} \Delta T_{c}=m_{w} s_{w} \Delta T_{w}$
$\Delta T_{w}=\frac{50 \times 10^{-3} \times 420 \times 10}{10 \times 10^{-3} \times 4200}=5^{\circ} \mathrm{C}$
16. (1) $E=\sigma A T^{4}$

As surface area A and surface temperature T are constant so $E_{1}=E_{2}$.
17. (1) Steam at $100^{\circ} \mathrm{C}$ contains extra $540 \mathrm{cal} / \mathrm{gm}$ energy as compared to water at $100^{\circ} \mathrm{C}$. So it's more dangerous to burn with steam than water.
18. (4)
19. (2) Liquid will over flow if $(\Delta V)_{1}>(\Delta V)_{g}$ $V \gamma \Delta \theta>V(3 \alpha) \Delta \theta \quad \gamma>3 \alpha$
20. (1) Change in length in both rods are same
i.e. $\Delta l_{1}=\Delta l_{2}$
$l \alpha_{1} \Delta \theta_{1}=l \alpha_{2} \Delta \theta_{2} \Rightarrow \frac{\alpha_{1}}{\alpha_{2}}=\frac{\Delta \theta_{2}}{\Delta \theta_{1}}\left(\because \frac{\alpha_{1}}{\alpha_{2}}=\frac{4}{3}\right)$
$\Rightarrow \frac{4}{3}=\frac{T-30}{180-30} \Rightarrow T=230^{\circ} \mathrm{C}$.
21. (1) On heating every single linear dimension increases so in both the cases radius will increas by equal amount
$\Delta R=R_{0} \alpha \Delta t$
So both will expand same.
22. (4) $m s_{A}(30-26)=m s_{B}(26-20)$
$\frac{s_{A}}{s_{B}}=\frac{6}{4}=\frac{3}{2}$
23. (1) Heat required by ice to convert totally into water at $100^{\circ} \mathrm{C}$,
$Q_{1}=1 \times 80+1 \times 1 \times 100=180 \mathrm{cal}$
Heat supplied by steam if it was to condense totally and convert into water at $100^{\circ} \mathrm{C}$,
$Q_{2}=1 \times 540=540 \mathrm{cal}$
As $Q_{2}>Q_{1}$, entire steam will not condense and
final temperature $=100^{\circ} \mathrm{C}$
Both water and steam will together in equilibrium at $100^{\circ} \mathrm{C}$.
24. (1) $m s \Delta \theta=m^{\prime} L$
$80 \times 1 \times(30-0)=m^{\prime} \times 80 \Rightarrow m^{\prime}=30 \mathrm{~g}$
25. (2) $i \propto \frac{1}{R} \Rightarrow i \propto \frac{1}{l / \mathrm{KA}} \quad i \propto \frac{A}{l} \Rightarrow i \propto \frac{\pi r^{2}}{l}$

So for option (2) i is maximum.
26. (1) The cavity inside the sphere expands in the same way as a solid sphere of the size of cavity would expand.
27. (4) $\frac{K_{F e} A(100-\theta)}{d}=\frac{K_{A g} A(\theta-0)}{d}$
$\frac{K_{F e}}{K_{A g}}=\frac{\theta-0}{(100-\theta)} \Rightarrow \frac{1}{11}=\frac{\theta}{(100-\theta)}$
$\therefore \theta=\frac{100}{12}=8.3^{\circ} \mathrm{C}$.
28. (2) Given $R_{1}=R_{2}$
$\Rightarrow \frac{1}{K_{1}} \times \frac{l_{1}}{A}=\frac{1}{K_{2}} \times \frac{l_{2}}{A} \Rightarrow \frac{l_{1}}{l_{2}}=\frac{K_{1}}{K_{2}}=\frac{5}{3}$.
29. (1) From Stefan's law, the energy radiated per second is given by $E=e \sigma T^{4} A$;
Here, $T=$ temperature of the body
$A=$ Surface area of the body
For same material e is same. σ is Stefan's constant. Let T_{1} and T_{2} be the temperature of two spheres. A_{1} and A_{2} be the are of two spheres.
$\therefore \frac{E_{1}}{E_{2}}=\frac{T_{1}^{4} A_{1}}{T_{2}^{4} A_{2}}=\frac{T_{1}^{4} 4 \pi r_{1}^{2}}{T_{2}^{4} 4 \pi r_{2}^{2}}=\frac{(4000)^{4} \times 1^{2}}{(2000)^{4} \times 4^{2}}=\frac{1}{1}$.
30. (2) As $Q \propto T^{4}$

So $\frac{Q_{1}}{Q_{2}}=\left(\frac{T_{1}}{T_{2}}\right)^{4} \Rightarrow \frac{2 \times 10^{5}}{32 \times 10^{5}}=\left(\frac{127+273}{T}\right)^{4}$
$\Rightarrow \frac{1}{2}=\frac{400}{T} \Rightarrow T=800 \mathrm{~K} \Rightarrow 800-273=527^{\circ} \mathrm{C}$.
31. (1) Let L_{1}^{\prime} and L_{2}^{\prime} ' be the lengths of the wire when temperature is changed by $\Delta T^{\circ} \mathrm{C}$.
At $T^{\circ} \mathrm{C}$,
At $T+\Delta^{\circ} \mathrm{C}$
$L_{e q}=L_{1}+L_{2}$
$\therefore L_{e q}\left(1+\alpha_{e q} \Delta T\right)=L_{1}\left(1+\alpha_{1} \Delta T\right)+L_{2}\left(1+\alpha_{2} \Delta T\right)$

$$
\left[\because L^{\prime}=L(1+\alpha \Delta T)\right]
$$

$\Rightarrow\left(L_{1}+L_{2}\right)\left(1+\alpha_{e q} \Delta T\right)=L_{1}+L_{2}+L_{1} \alpha_{1} \Delta T+L_{2} \alpha_{2} \Delta T$
$\Rightarrow \alpha_{e q}=\frac{L_{1} \alpha_{1}+L_{2} \alpha_{2}}{L_{1}+L_{2}}$.
32. (2) For difference of lengths to be constant $\ell_{1} \alpha_{1}=\ell_{2} \alpha_{2}$
$\alpha_{2}=\frac{\ell_{1} \alpha_{1}}{\ell_{2}}=\frac{120 \times 3 \times 10^{-5}}{180}=2 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
33. (2) Heat required from raising the temperature of a body through $1^{\circ} \mathrm{C}$ is called its thermal capacity.
34. (1) As the coefficient of thermal expansion of the brass is greater than steel. Hence, the length of brass strip will be more than steel strip. Therefore, brass strip will be on convex side.
35. (1) $\Delta \mathrm{T}=120-20=100^{\circ} \mathrm{C}, \quad \mathrm{A}=400 \mathrm{~cm}^{2}$
$\gamma=3 \times 10^{-4} /{ }^{\circ} \mathrm{C} \quad \alpha=\frac{\gamma}{3}=10^{-4} /{ }^{\circ} \mathrm{C}$
$\beta=2 \alpha=2 \times 10^{-4} /{ }^{\circ} \mathrm{C}$
$\Delta \mathrm{A}=\mathrm{A} \beta \Delta T=400 \times 2 \times 10^{-4} \times 100=8 \mathrm{~cm}^{2}$
Final area $=A+\Delta A=400+8=408 \mathrm{~cm}^{2}$.

Section - B (Attempt Any 10 Questions)

36. (3) Equivalent electrical circuit, will be as shown in figure.

Temperature difference between A and D is $180^{\circ} \mathrm{C}$, which is equally distributed in all the rods. Therefore, temperature difference between A and B will be $60^{\circ} \mathrm{C}$, or temperature of B should be $140^{\circ} \mathrm{C}$.
37. (4) According to principal of calorimetry,

Heat lost $=$ Heat gain
$100 \times 0.1(\mathrm{~T}-75)=100 \times 0.1 \times(75-30)+170 \times 1$ $\times(75-30)$
$10 \mathrm{~T}-750=450+7650=8100$
$\Rightarrow \mathrm{T}-75=810 \Rightarrow \mathrm{~T}=885^{\circ} \mathrm{C}$.
38. (1) As $R_{T}=\frac{1}{K} \frac{l}{A}$ and we know under balanced condition for a Wheatstones bridge
$\frac{R_{1}}{R_{2}}=\frac{R_{3}}{R_{4}} \Rightarrow \frac{K_{2}}{K_{1}}=\frac{K_{4}}{K_{3}} \Rightarrow K_{2} K_{3}=K_{1} K_{4}$.
39. (4)
40. (1) The kinetic energy of the bullet will be utilized to heat the bullet
$\frac{1}{2} m v^{2}=(m s \Delta \theta) J$
$\frac{1}{2} \times 2 \times 10^{-3} \times(200)^{2}=2 \times 0.03 \times \Delta \theta \times 4.2$
$\Delta \theta=158^{\circ} \mathrm{C}$.
41. (4) As temperature difference is same
\Rightarrow rods are connected in parallel with different length as shown in figure.

$\Delta T_{1}=\Delta T_{2}$
$i_{1} R_{1}=i_{2} R_{2} \Rightarrow \frac{i_{1}}{i_{2}}=\frac{R_{2}}{R_{1}} \Rightarrow \frac{l_{2}}{l_{1}} \times \frac{A_{1}}{A_{2}}$
$\Rightarrow \frac{i_{1}}{i_{2}}=\frac{1}{2} \times \frac{1}{4}=\frac{1}{8}$.
42. (1) $\frac{x-20}{150-20}=\frac{C-0}{100-0}$
$\Rightarrow \frac{x-20}{130}=\frac{C}{100}=\frac{60}{100}$
$\Rightarrow x=\frac{60}{100} \times 130+20=98^{\circ} \mathrm{C}$.
43. (2) Let x be the temperature measured by faulty thermometer
$\therefore \frac{C-0}{100}=\frac{x \text {-lower fixed point }}{\text { No. of divisions between the two fixed points }}$ $\Rightarrow \frac{C}{100-0}=\frac{59-5}{95-5} \Rightarrow \frac{C}{100}=\frac{54}{90} \Rightarrow C=60^{\circ} \mathrm{C}$.
44. (3) $\frac{\Delta \theta}{\Delta t}=-k\left(\bar{\theta}-\theta_{0}\right)$
$\frac{50-40}{5}=-k\left(\frac{50+40}{2}-20\right)$
$2=-k \times 25 \Rightarrow k=-\frac{2}{25}$
$\frac{40-30}{t}=-k\left(\frac{40+30}{2}-20\right)$
$\frac{10}{t}=\frac{2}{25}(15) \Rightarrow t=\frac{25}{3} \mathrm{~min}$.
45. (2) Here, temperature of liquid $=\frac{2}{5}$ of distance between lower and upper fixed points $=\frac{2}{5} \times 100=40^{\circ} \mathrm{C}$

On Kelvin scale, $T_{\mathrm{K}}=273.15+40$

$$
=313.15 \mathrm{~K} .
$$

46. (2) By Newton's law of cooling
$\frac{\theta_{1}-\theta_{2}}{t}=-K\left[\frac{\theta_{1}+\theta_{2}}{2}-\theta_{0}\right]$
where θ_{0} is the temperature of surrounding.
Now, hot water cools from $60^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ in 10 minutes,
$\frac{60-50}{10}=-K\left[\frac{60+50}{2}-\theta_{0}\right]$
Again, it cools from $50^{\circ} \mathrm{C}$ to $42^{\circ} \mathrm{C}$ in next 10 min .
$\frac{50-42}{10}=-K\left[\frac{50+42}{2}-\theta_{0}\right]$
Dividing equations (i) by (ii) we get
$\frac{1}{0.8}=\frac{55-\theta_{0}}{46-\theta_{0}} \Rightarrow \frac{10}{8}=\frac{55-\theta_{0}}{46-\theta_{0}}$
$460-10 \theta_{0}=440-8 \theta_{0} \Rightarrow 2 \theta_{0}=20 \Rightarrow \theta_{0}=10^{\circ} \mathrm{C}$.
47. (3) Let T be the final equal temperature,

Heat lost by coffee = Heat gained by the cup
Using, $\mathrm{Q}=m s_{\Delta T}$,
$0.3 \times 4080 \times(70-T)=0.12 \times \mathrm{s}_{\text {cup }} \times(T-20)$
$\Rightarrow 0.3 \times 4080 \times(70-T)=0.12 \times 1020 \times(T-20)$
$\Rightarrow 4 \times 70-4 T=0.4 T-8$
$\Rightarrow T=\frac{288}{4.4}=65.5^{\circ} \mathrm{C}$
48. (1) $-M . S=K\left(\theta-\theta_{0}\right)$
$\therefore \theta-\theta_{0}=A e^{-K t}$
Temperature reduced exponentially.
49. (1) If temperature of surrounding is considered, then net loss of energy of a body by radiation :
$Q=A_{e} \sigma\left(T^{4}-T_{0}^{4}\right)$ or $Q \propto\left(T^{4}-T_{0}^{4}\right)$
$\frac{Q_{1}}{Q_{2}}=\frac{T_{1}^{4}-T_{0}^{4}}{T_{2}^{4}-T_{0}^{4}}=\frac{(273+327)^{4}-(273+27)^{4}}{(273+427)^{4}-(273+27)^{4}}$
$\frac{Q_{1}}{Q_{2}}=\frac{(600)^{4}-(300)^{4}}{(700)^{4}-(300)^{4}}$
50. (4) Let m gram of ice is added.

From principal of calorimeter

heat gained (by ice) $=$ heat lost (by water)
$m \times 2.1 \times[0-(-20)]+(m-20) \times 334$

$$
=50 \times 4.2 \times(40-0)
$$

$376 m=8400+6680$
$\therefore m=40.1$.

CHEMISTRY

SECTION - A (35 Questions)

51. (2)
$\left[\mathrm{H}^{+}\right]$of water increases with increase in temperature hence p^{H} decreases.
On addition of acid in water $\left[\mathrm{H}^{+}\right]$increases hence pH decreases.
52. (2)

Higher is K_{sp} value, higher is the solubility.
53. (1)
$\mathrm{p}^{\mathrm{H}}=1 \therefore\left[\mathrm{H}^{+}\right]=1 \times 10^{-1} \Rightarrow$ volume is 12
$\mathrm{p}^{\mathrm{H}}=2 \therefore\left[\mathrm{H}^{+}\right]=1 \times 10^{-2} \Rightarrow$ volume must be 10
L
\therefore Change in volume $\Delta \mathrm{V}=10 \mathrm{~L}-1 \mathrm{~L}$

$$
\Delta \mathrm{V}=9 \mathrm{~L}
$$

54. (2)

Less value of $\mathrm{pH} \Rightarrow$ stronger is the acid
55. (2)
ZnCl_{2} is the salt of weak base and strong acid, Hence pH of it's solution is acidic which is less than given salts.
56. (2)
$\mathrm{M}_{2} \mathrm{~S} \rightarrow 2 \mathrm{M}^{+}+\mathrm{S}^{-2}$
$\therefore \mathrm{K}_{\mathrm{sp}}=(2 \mathrm{~S})^{2} \times \mathrm{S}$
$4 S^{3} \Rightarrow 4 \times\left(3 \times 10^{-6}\right)^{3}$
$\Rightarrow 4 \times\left(3 \times 10^{-6}\right)^{3}$
$=1.08 \times 10^{-16}$
57. (2)
$\mathrm{CH}_{3} \mathrm{COONH}_{4} \rightarrow$ is a salt of $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{NH}_{4} \mathrm{OH}$ having almost same value of $\mathrm{Ka} \& \mathrm{~Kb}$, hence the p^{H} of salt is nearly equal to " 7 ".
58. (4)

Acidic strength \propto degree of ionisation $(\propto) \propto$ dissociation constant $(\mathrm{Ka}) \propto \frac{1}{\mathrm{pKa}}$
59. (3)

For weak acid and conjugate base.
$\mathrm{K}_{\mathrm{a}} \times \mathrm{K}_{\mathrm{b}}=\mathrm{k}_{\mathrm{w}} \Rightarrow 10^{-5} \times \mathrm{k}_{\mathrm{b}}=10^{-14}$
$\therefore \mathrm{k}_{\mathrm{b}}=\frac{10^{-14}}{10^{-5}}=10^{-9}$
$\therefore \mathrm{pK}_{\mathrm{b}}=-\log 10^{-9}=9$
60. (1)
7.005
61. (4)

Concept of dissociation constants weak acid \& their dissociation in water i.e. aqueous medium.
62. (2)

Due to common ion effect dissociation of $\mathrm{CH}_{3} \mathrm{COOH}$ decreases which decreases $\left[\mathrm{H}^{+}\right]$in solution.
$\therefore \mathrm{pH}$ of solution increases.
63. (1)
$\left[\mathrm{H}^{+}\right]=\propto \mathrm{c}=\sqrt{\mathrm{ka} \times \mathrm{c}} \Rightarrow \sqrt{1.6 \times 10^{-5} \times 0.01}=\sqrt{16 \times 10^{-8}}$
$\Rightarrow \sqrt{16 \times 10^{-8}} \Rightarrow 4 \times 10^{-4}$
$\therefore \mathrm{p}^{\mathrm{H}}=-\log \left[\mathrm{H}^{+}\right] \Rightarrow-\log \left(4 \times 10^{-4}\right) \Rightarrow 3.4$
64. (2)
$\mathrm{BaSO}_{4} \longleftrightarrow \mathrm{Ba}^{+}+\mathrm{SO}_{4}^{-2} \Rightarrow \mathrm{~K}_{\text {sp }}=\mathrm{S}^{2}$
$\therefore \mathrm{S}=\sqrt{\mathrm{K}_{\mathrm{sp}}}=\sqrt{1 \times 10^{-10}}=1 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$
$\Rightarrow 0.5 \mathrm{gm} \mathrm{BaSO}_{4}$
$\Rightarrow 0.0021 \mathrm{~mol} \Rightarrow 2.1 \times 10^{-3}$ mole
\therefore Volume required is

$$
=\frac{2.1 \times 10^{-3} \mathrm{~mole}}{1 \times 10^{-5} \mathrm{~mole}}=210 \mathrm{~L} \cong 214 \mathrm{~L}
$$

65. (3)

Concept of salt hydrolysis.
66. (1)

Consider common ion effect \Rightarrow common ion decreases solubility.
67. (3)
i) pH of $\mathrm{CH}_{3} \mathrm{COOH} \operatorname{sol}^{\mathrm{n}}=1 / 2(\mathrm{pKa}-\log \mathrm{c})$
$\Rightarrow 1 / 2(4.74-\log 0.01)$
$\Rightarrow 1 / 2(4.74+2) \Rightarrow 1 / 2 \times 6.74$
$\mathrm{pH} \Rightarrow 3.37$
ii) pH of buffer $\mathrm{sol}^{\mathrm{n}}=$
$\mathrm{pKa}+\log \frac{0.01}{0.01} \Rightarrow \mathrm{pKa} \Rightarrow 4.74$
\therefore change in $\mathrm{pH}=4.74-3.37$
$=1.37$
68. (3)
10^{-12}
69. (4)

Sodium cyanide: Anionic hydrolysis, generates hydroxide ion
70. (1) $p^{\mathrm{H}}=7$, Hence there is no change in p^{H} on dilution of solution
71. (2)
$\mathrm{pka}=4.77, \mathrm{pkb}=3.27$
$\therefore \mathrm{p}^{\mathrm{H}}$ of sald $=7+\left(\frac{\mathrm{pKa}-\mathrm{pKb}}{2}\right)$

$$
\Rightarrow 7+0.75
$$

$$
7.75
$$

72. (4)

If Assertion is wrong \& Reason are true statements, then mark (4)
73. (1)

If both Assertion \& Reason are true and the Reason is the correct explanation of the Assertion, then mark (1)
74. (3)
$\mathrm{H}_{2} \mathrm{O} \rightarrow \overline{\mathrm{O}} \mathrm{H}+\mathrm{H}^{+}, \mathrm{HF} \rightarrow \mathrm{F}^{-}+\mathrm{H}^{+}$
conjugate base conjugate base
75. (3)

Excess of solution of weak base in solution of strong acid of same concentration gives basic buffer.
76. (1)

Solubility of $\mathrm{AB}=\sqrt{\mathrm{K}_{\mathrm{sp}}}=2 \times 10^{-10}$
Solubility of $\mathrm{A}_{2} \mathrm{~B} \sqrt[3]{\frac{\mathrm{K}_{\text {sp }}}{4}}=2 \times 10^{-4}$
Solubility of $\mathrm{AB}_{3}=\left[\frac{\mathrm{K}_{\text {sp }}}{27}\right]^{1 / 4}=10^{-8}$
77. (3)

For salt of weak acid and weak base
$\mathrm{K}_{\mathrm{h}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{a}} \times \mathrm{K}_{\mathrm{b}}}$
78. (3)
$\mathrm{NaCl}_{(\mathrm{s})} \rightleftharpoons \mathrm{Na}_{(\mathrm{aq.})}^{+}+\mathrm{Cl}_{(\mathrm{aq} .)}^{-}$
$\mathrm{HCl} \rightleftharpoons \mathrm{H}^{+}+\mathrm{Cl}^{-}$
The increase in $[\mathrm{Cl}]$ brings in an increase in $\left[\mathrm{Na}^{+}\right]$ [Cl^{-}] which will lead for backward reaction because $\mathrm{K}_{\text {sp }}$ of

$$
\mathrm{NaCl}=\left[\mathrm{Na}^{+}\right]\left[\mathrm{Cl}^{-}\right] .
$$

79. (3)

As the solution is acidic, $\mathrm{pH}<7$. This is because $\left[\mathrm{H}^{+}\right]$from $\mathrm{H}_{2} \mathrm{O}\left[10^{-7}\right]$ cannot be neglected in comparison to 10^{-8}.
80. (3)

$$
\begin{array}{ll}
\mathrm{BaSO}_{4} \rightleftharpoons & \mathrm{Ba}^{2+}+\mathrm{SO}_{4}^{2-} \\
\therefore & \mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Ba}^{2+}\right] \times\left[\mathrm{SO}_{4}^{2-}\right] \\
& 4 \times 10^{-10}=\left[1 \times 10^{-4}\right] \times\left[\mathrm{SO}_{4}^{2-}\right] \\
& \\
& {\left[\mathrm{SO}_{4}^{2-}\right]=\frac{4 \times 10^{-10}}{1 \times 10^{-4}}=4 \times 10^{-6} \mathrm{M}}
\end{array}
$$

81. (2)
$\mathrm{CH}_{3} \mathrm{COOH}$ is a weak acid, conjugate base of weak acid is strong base.

82. (3)

Strong electrolyte added into solution of weak electrolyte containing common ion shows common ion effect.
$\mathrm{NH}_{4} \mathrm{OH}+\mathrm{NH}_{4} \mathrm{Cl} \rightarrow$ common ion effect weak strong
83. (3)
$\Rightarrow \mathrm{HCl}$ is a strong acid.
84. (4)

For $\mathrm{Ag}_{2} \mathrm{~S} \Rightarrow$
$\mathrm{Ag}_{2} \mathrm{~S} \longleftrightarrow 2 \mathrm{Ag}^{+}+\mathrm{S}^{2-}$
$\therefore \mathrm{Ksp}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{~s}^{-2}\right]$
$=[\mathrm{S}]^{2}[\mathrm{~S}]$
After add $4 \mathrm{~g} 0.1 \mathrm{~s}^{2-}$ ions
Ksp $=[s]^{2}[s+0.1]$
but $\mathrm{s} \lll 0.1$
$\therefore \mathrm{Ksp}=[\mathrm{S}]^{2}[0.1]$
$\therefore \mathrm{S}=\sqrt{\frac{\mathrm{Ksp}}{0.1}}=\left(\frac{10^{-51}}{0.1}\right)^{1 / 2}=10^{-25} \mathrm{M}$
85. (2)

$$
\begin{aligned}
& \mathrm{pH}=5 \Rightarrow\left[\mathrm{H}^{+}\right]=1 \times 10^{-5}, \\
& \mathrm{C}=0.005 \mathrm{~m}=5 \times 10^{-3} . \\
& \therefore \propto=\frac{\left[\mathrm{H}^{+}\right]}{\mathrm{C}}=\frac{1 \times 10^{-5}}{5 \times 10^{-3}}=2 \times 10^{-3} \\
& \therefore \% \propto=2 \times 10^{-3} \times 100=2 \times 10^{-1} \\
& \therefore \propto=0.2 \%
\end{aligned}
$$

SECTION - B (Attempt Any 10 Questions)

86. (1)
pH of $\mathrm{Ba}(\mathrm{OH})_{2}=12$
$\mathrm{pH}=12$
So, $\mathrm{pOH}=2$
$[\mathrm{OH}]=10^{-2}$
$\mathrm{Ba}(\mathrm{OH})_{2} \rightleftharpoons \underset{\mathrm{~s}}{ } \mathrm{Ba}^{2+}+\underset{2 \mathrm{~S}}{2 \mathrm{OH}^{-}}$
As, $2 \mathrm{~S}=10^{-2}$
$\mathrm{S}=5 \times 10^{-3} \mathrm{M}$
$\mathrm{K}_{\text {sp }}=\left[5 \times 10^{-3}\right]\left[10^{-2}\right]^{2}$
$\mathrm{K}_{\text {sp }}=5 \times 10^{-7} \mathrm{M}^{3}$
87. (3)

For water
$\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \mathrm{H}^{+}+\overline{\mathrm{O}} \mathrm{H}$
$\left[\mathrm{H}_{2} \mathrm{O}\right]=1 \mathrm{~L}=1000 \mathrm{gm}=55.5 \mathrm{moles}$
$\therefore \mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right][\overline{\mathrm{O}} \mathrm{H}]}{\left[\mathrm{H}_{2} \mathrm{O}\right]} \Rightarrow \frac{\mathrm{k}_{\mathrm{w}}}{55.5} \Rightarrow \frac{10^{-12}}{55.5}=1.8 \times 10^{-14}$
88. (4)
$\mathrm{A}_{3} \mathrm{~B}_{2} \rightleftarrows\left[\mathrm{~A}^{+2}\right]^{3}\left[\mathrm{~B}^{3-}\right]^{2}$
$(3 S)^{3}(2 S)^{2}$
$\therefore \mathrm{K}_{\mathrm{sp}}=108 \mathrm{~S}^{5}$
Ratio of B^{3-} ions concentration to K_{sp}.
$\frac{\left[\mathrm{B}^{3-}\right]}{\mathrm{K}_{\text {sp }}}=\frac{2 \mathrm{~S}}{108 \mathrm{~S}^{5}}=\frac{1}{54 \mathrm{~S}^{4}}$
But $\mathrm{S}=\frac{\mathrm{X}}{\mathrm{M}} \Rightarrow \frac{\mathrm{M}^{4}}{54 \times \mathrm{X}^{4}}$
89. (3)

$$
\mathrm{Ag}_{2} \mathrm{~S}>\mathrm{CuS}>\mathrm{HgS}
$$

90. (1)
i) moles of $\left[\mathrm{H}^{+}\right]$in

$$
\mathrm{HCl}=\frac{0.33 \times 30}{1000}=9.9 \times 10^{-3}=1 \times 10^{-2}
$$

ii) moles of $\left[\mathrm{H}^{+}\right]$in
$\mathrm{HNO}_{3}=\frac{0.5 \times 20}{1000}=10 \times 10^{-3}=1 \times 10^{-2}$
iii) moles of $[\overline{\mathrm{O}} \mathrm{H}]$ in
$\mathrm{NaOH}=\frac{0.25 \times 40}{1000}=10 \times 10^{-3}=1 \times 10^{-2}$
\therefore moles of $\left[\mathrm{H}^{+}\right]$in overall sol ${ }^{\text {n }}$ are $=1 \times 10^{-2}$
$\therefore \mathrm{p}^{\mathrm{H}}=-\log \left[\mathrm{H}^{+}\right]=-\log 10^{-2}=2$
91. (3)
$\mathrm{pH10} \Rightarrow \mathrm{pOH}=10^{4}=1 \Rightarrow[\overline{\mathrm{O}} \mathrm{H}]=10^{-4}$
$\mathrm{pH} 12 \Rightarrow \mathrm{pOH}=10^{2} \Rightarrow[\overline{\mathrm{O}} \mathrm{H}]=10^{-2}$
equal volumes of both sol ${ }^{\mathrm{n}}$ are mixed, hence $[\overline{\mathrm{O}} \mathrm{H}]$ in resultant sol ${ }^{17}$ is,
$[\overline{\mathrm{O}} \mathrm{H}]=\frac{\left[1 \times 10^{-4}\right]+\left[100 \times 10^{-4}\right]}{2}=\frac{101 \times 10^{-4}}{2}$
$[\overline{\mathrm{O}} \mathrm{H}]=50.5 \times 10^{-4} \Rightarrow 5.05 \times 10^{-3}$
$\therefore \mathrm{pOH}-\log \left(5.05 \times 10^{-3}\right)=2.3$
$\therefore \mathrm{pH}=14-2.3=11.7$
92. (3)

P-2, Q-1, R-4, S-3
93. (4)
i) moles of $\left[\mathrm{H}^{+}\right]$in HCl
$\Rightarrow \frac{0.05 \times 20}{1000}=\frac{1}{1000}=1 \times 10^{-3}(20 \mathrm{ml})$
ii) moles of $[\overline{\mathrm{O}} \mathrm{H}]$ in $\mathrm{Ba}(\mathrm{OH})_{2}$
$\Rightarrow \frac{2 \times 0.1 \times 30}{1000}=\frac{6}{1000}=6 \times 10^{-3}(30 \mathrm{ml})$
$\therefore[\overline{\mathrm{O}} \mathrm{H}] \Rightarrow(6-1) \times 10^{-3}=5 \times 10^{-3}$ in $50 \mathrm{ml} \mathrm{sol}{ }^{\mathrm{n}}$.
$\therefore \mathrm{M}=\frac{5 \times 10^{-3} \times 1000}{50}=\frac{5}{50}=0.1 \mathrm{M}$
94. (4)

Le the solubility of $\mathrm{Ni}(\mathrm{OH})_{2}$ is s

$$
\underset{\mathrm{s}}{\mathrm{Ni}(\mathrm{OH})_{2}} \rightleftharpoons \underset{\mathrm{~s}}{\mathrm{Ni}^{2+}} \underset{2 \mathrm{~s}}{2 \mathrm{OH}^{-}}
$$

$$
\mathrm{NaOH} \rightarrow \mathrm{Na}+\mathrm{OH}^{-}
$$

$0.1 \quad 0.1 \quad 0.1$
As $\mathrm{K}_{\text {sp }}$ is small $2 \mathrm{~s} \ll 0.10$
therefore $(0.10+2 \mathrm{~s}) \approx 0.10$
so Total $[\mathrm{OH}]^{-}=0.10$
Ionic product $=\left[\mathrm{Ni}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2}$
$2 \times 10^{-15}=\mathrm{s}(0.10)^{2}$
$\mathrm{s}=2 \times 10^{-13} \mathrm{M}$
95. (4)
(IV) gp. the S^{2-} concentration increase when added the
$\mathrm{NH}_{4} \mathrm{OH}$ because

$$
\begin{aligned}
& \mathrm{NH}_{4} \mathrm{OH} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-} \\
& \mathrm{H}_{2} \mathrm{~S} \rightleftharpoons 2 \mathrm{H}^{+}+\mathrm{S}^{2-} \\
& \mathrm{OH}^{-}+\mathrm{H}^{+} \rightleftharpoons \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

So that S^{2-} is increased.
96. (3)

Species which can donate and accept a proton $(\mathrm{H})^{+}$act as pronsted acid as well as base.
ii) $\mathrm{HSO}_{4}^{-}+\mathrm{H}^{+} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{HSO}_{4}^{-1} \rightarrow \mathrm{SO}_{4}^{-2}+\mathrm{H}^{+}$
iii) $\mathrm{NH}_{3}+\mathrm{H}^{+} \rightarrow \stackrel{+}{\mathrm{N}} \mathrm{H}_{4}, \stackrel{-}{\mathrm{N}} \mathrm{H}_{3} \rightarrow \stackrel{-}{\mathrm{N}} \mathrm{H}_{2}+\mathrm{H}^{+}$
97. (1)

Hydrolysis constant of salt of weak base strong acid is
$\left(\mathrm{NH}_{4} \mathrm{Cl}\right) \mathrm{K}_{\mathrm{h}}=\frac{\mathrm{K}_{\mathrm{w}}}{\mathrm{K}_{\mathrm{b}}} \Rightarrow \frac{1 \times 10^{-14}}{1.77 \times 10^{-5}}=0.565 \times 10^{-9}$
$\therefore \mathrm{K}_{\mathrm{h}}=5.65 \times 10^{-10}$
98. (3)
i) moles of $\left[\mathrm{H}^{+}\right]$in
$\mathrm{HCl}=\frac{0.2 \times 75}{1000}=\frac{15}{1000}=1.5 \times 10^{-2}(75 \mathrm{ml})$
ii) moles of $[\overline{\mathrm{O}} \mathrm{H}]$ in
$\mathrm{NaOH}=\frac{0.2 \times 25}{1000}=\frac{5}{1000}=5 \times 10^{-3}=0.5 \times 10^{-2}(25 \mathrm{ml})$
$\therefore\left[\mathrm{H}^{+}\right]=\left(1.5 \times 10^{-2}\right)-\left(0.5 \times 10^{-2}\right)$
$\Rightarrow(1.5-0.5) \times 10^{-2}$
$\Rightarrow 1 \times 10^{-2}$ in (100 ml)
$\therefore\left[\mathrm{H}^{+}\right]=\frac{1 \times 10^{-2} \times 1000}{100}=1 \times 10^{-1}$
$\therefore \mathrm{p}^{\mathrm{H}}=-\log \left[\mathrm{H}^{+}\right] \Rightarrow \log 1 \times 10^{-1}=1$
$\therefore \mathrm{p}^{\mathrm{H}}=-\log \left[\mathrm{H}^{+}\right] \Rightarrow-\log 1 \times 10^{-1}=1$

$$
\mathrm{p}^{\mathrm{H}}=1
$$

99. (4)
PF_{3} has lone pair at " P " atom
Hence PF_{3} is lewis base.
100. (3)

Given, $\mathrm{K}_{\mathrm{b}}=1.8 \times 10^{-5}$

$$
\mathrm{pOH}=\mathrm{pK}_{\mathrm{b}}+\log \frac{[\text { salt }]}{[\text { base }]}
$$

$$
\begin{aligned}
& =4.74+\log \frac{0.20}{0.30} \\
& =4.74+(0.301-0.477) \\
& =4.56
\end{aligned}
$$

$\therefore \mathrm{pH}+\mathrm{pOH}=14$
$\therefore \mathrm{pH}=14-4.56=9.44$

