Answer Key Version - P (NEET FRESH All Batches)

Physics					Chemistry				
Sec. A	11. 3	22. 4	33. 2	43. 1	Sec. A	61. 2	72. 2	83. 1	93. 1
01. 3	12. 3	23. 3	34. 3	44. 3	51. 2	62. 3	73. 4	84. 1	94. 4
02. 2	13. 4	24. 4	35. 2	45. 4	52. 4	63. 1	74. 4	85. 3	95. 4
03. 3	14. 3	25. 2	Sec. B	46. 2	53. 1	64. 4	75. 3	Sec. B	96. 4
04. 2	15. 4	26. 2	36.5830	47.152	54. 1	65. 1 ®	76. 1	86. 2	97. 3
05. 4	16. 4	27. 3	37. 1	48. 2	55. 4	66. 3	77. 1	87. 2	98. 2
06. 1	17. 3	28. 4	38. 1	49. 2	56. 1	67. 1	78. 3	88. 2	99. 1
07. 1	18. 3	29. 1	39. 2	50. 3	57. 4	68. 4	79. 2	89. 1	100. 1
08. 2	19. 3	30. 3	40.11	K IN	58. 2	69. 1	80. 4	90. 1	
09. 1	20. 3	31. 1	41. 4		59. 3	70. 4	81. 2	91. 2	
10. 4	21. 1	32. 3	42. 1		60. 3	71. 2	82. 4	92. 3	
Biology									
$\begin{aligned} & \text { Part-I } \\ & \text { Sec.A } \end{aligned}$	110. 3	121. 3	132. 4	142. 1	Part-II Sec.A	160. 1	171.1	182. 2	192. 1
	111. 2	122. 2	133. 4	143. 4		161. 4	172. 3	183. 1	193. 4
101. 4	112. 1	123. 1	134. 4	144. 2	151. 3	162. 2	173. 1	184. 2	194. 4
102. 1	113. 1	124. 4	135. 3	145. 1	152. 1	163. 2	174. 1	185. 2	195. 1
103. 3	114. 3	125. 3	Sec.B	146. 2	153. 1	164. 3	175. 4	Sec. B	196. 4
104. 2	115. 3	126. 1	136. 4	147. 3	154. 1	165. 4	176. 2	186. 2	197. 1
105. 2	116. 3	127. 3	137. 3	148. 3	155. 3	166. 1	177. 1	187. 2	198. 4
106. 1	117. 1	128. 2	138. 4	149. 3	156. 3	167. 3	178. 1	188. 2	199. 3
107. 2	118. 3	129. 4	139. 4	150. 3	157. 2	168. 3	179. 2	189. 1	200. 3
108. 4	119. 1	130. 1	140. 3		158. 3	169. 3	180. 4	190. 1	
109. 1	120. 1	131. 1	141. 4		159. 2	170. 2	181. 3	191. 1	

PHYSICS

SECTION - A (35 Questions)

1. (3) ΔU is independent of path $\Delta U_{1}=\Delta U_{2}$

$$
Q_{1}-W_{1}=Q_{2}-W_{2}
$$

2. (2)
3. (3) $\frac{v_{r m s}^{\prime}}{v_{r m s}}=\sqrt{\frac{T^{\prime}}{T}}=\sqrt{\frac{127+273}{27+273}}=\sqrt{\frac{400}{300}}$ $v^{\prime}{ }_{r m s}=\sqrt{\frac{4}{3}} v_{r m s}=\sqrt{\frac{4}{3}} \times 200=\frac{400}{\sqrt{3}} \mathrm{~m} / \mathrm{s}$
4. (2) First law is applicable to a cyclic process. Concept of entropy is introduced by the second law of thermodynamics.
5. (4) $U=U_{O_{2}}+U_{A r}=2 \times \frac{5}{2} R T+4 \times \frac{3}{2} R T=11 R T$
6. (1) Mean free path $\lambda=\frac{1}{\sqrt{2} \pi d^{2} n}$
n : number of molecules/volume
d : Diameter of molecules
7. (1) $\Delta U_{A}=\Delta U_{B}, \Delta W_{A}>\Delta W_{B}$ (since area below the process $A>$ area below the process B)
$\Delta Q_{1}=\Delta U_{A}+\Delta W_{A}, \Delta Q_{2}=\Delta U_{B}+\Delta W_{B}$
$\Delta Q_{1}>\Delta Q_{2}$
8. (2) $\lambda \propto 1 / \mathrm{P}$

When mean free path is doubled, pressure becomes half.
09. (1)
10. (4) Zeroth law of thermodynamics defines the concept of temperature.
11. (3) Given, $\Delta Q=4 \Delta W$

But, $\Delta W+\Delta U=\Delta Q$
$\therefore \Delta U=3 \Delta W=\frac{3}{4} \Delta Q$
$\Rightarrow n C_{V} \Delta T=\frac{3}{4} n C \Delta T$
or, $C=\frac{4}{3} C_{V}=\frac{4}{3}\left(\frac{3 R}{2}=2 R.\right)$
12. (3) $P V=n_{1} R T=R T$
$P^{\prime} V=n_{2} R \cdot 2 T=2 R T$
(ii) $/(\mathrm{i})$
$\frac{P^{\prime}}{P}=2 \Rightarrow P^{\prime}=2 P$
13. (4) (I) Adiabatic process : No exchange of heat takes place with surroundings.
$\Rightarrow \Delta Q=0$
(II) Isothermal process : Temp. remains constant
$\therefore \Delta T=0 \Rightarrow \Delta U \frac{f}{2} n R \Delta T \Rightarrow \Delta U=0$
No change in internal energy $[\Delta U=0]$.
(III) Isochoric process volume remains constant
$\Delta V=0 \Rightarrow W=\int P \cdot d V=0$
Hence work done is zero.
(IV) In isobaric process pressure remains constant.
$W=P \cdot \Delta V \neq 0$
$\Delta U=\frac{f}{2} n R \Delta T=\frac{f}{2}[P \Delta V] \neq 0$
$\therefore \Delta Q=n C_{p} \Delta T \neq 0$
14. (3) $P V=n \mathrm{RT}$
15. (4) Total translational K.E. $=\frac{3}{2} R T=\frac{3}{2} p V$
16. (4) $Q_{A C B}=W_{A C B}+U_{A C B}$
$60 \mathrm{~J}=30 \mathrm{~J}+U_{A C B}$
$U_{C B}=30 \mathrm{~J}$
$U_{A D B}=U_{A C B}=30 \mathrm{~J}$
$U_{A C D}=U_{A C B}=30 \mathrm{~J}$
$Q_{A C D}=U_{A C B}+W_{A C B}$
$=10 \mathrm{~J}+30 \mathrm{~J}=40 \mathrm{~J}$.
17. (3) $P=\frac{1}{3} \frac{m N}{V} \bar{v}^{2}=\frac{1}{3} \frac{M}{V} v_{r m s}^{2} \Rightarrow P \propto v_{r m s}^{2}$
$v_{r m s}=\sqrt{\frac{3 R T}{M_{0}}} \Rightarrow V_{r m s} \propto T^{1 / 2}$
18. (3) The ratio of the specific heats in relation with degrees of freedom is given by $\gamma=1+\frac{2}{n}$
19. (3) Internal energy depends only on initial and final state

So, $\Delta U_{A}=\Delta U_{B}$
Also, $\Delta Q=\Delta U+W$
As $W_{A}>W_{B} \Rightarrow \Delta Q_{A}>\Delta Q_{B}$
20. (3) $W=Q_{A B}+Q_{B C}+Q_{C A}$
$\frac{1}{2} \times 4 \times 10^{4} \times 2 \times 10^{-3}=400+100+Q_{C A}$
$Q_{C A}=-460=Q_{A C}, Q_{A C}=460 \mathrm{~J}$
21. (1) ΔU is same for all the paths $\Delta U_{1}=\Delta U_{2}=\Delta U_{3}$
$W_{1}>W_{2}>W_{3}$
$Q_{1}>Q_{2}>Q_{3}$
22. (4) $\mathrm{a} \rightarrow$ Isobasic, $\mathrm{b} \rightarrow$ Isothermal, $\mathrm{c} \rightarrow$ Adiabatic,
$\mathrm{d} \rightarrow$ Isochoric
23. (3) $P \propto T^{\left(\frac{\gamma}{\gamma-1}\right)} \quad P \propto T^{7 / 2}$
$\frac{2}{P_{2}}=\left(\frac{300}{1200}\right)^{\frac{7}{2}} \Rightarrow P_{2}=2(4)^{\frac{7}{2}}=256 \mathrm{~atm}$.
24. (4) $P_{1} V_{1}^{\frac{5}{3}}=P_{2}\left(\frac{V_{1}}{8}\right)^{5 / 3} \quad \mathrm{P}_{2}=32 \mathrm{P}_{1}$
25. (2) In isochoric process volume remains constant.
26. (2) $T_{1} V_{1}^{\gamma-1}=T_{2} V_{2}^{\gamma-1}$
$300(V)^{2 / 3}=T_{2}\left(\frac{8 V}{27}\right)^{2 / 3}$
$T_{2}=300\left(\frac{27}{8}\right)^{2 / 3} \Rightarrow \quad T_{2}=300 \times \frac{9}{4}=675 \mathrm{~K}$
27. (3) $V_{\mathrm{rms}}=\sqrt{\frac{3 \rho v}{\text { mass of thegas }}}$
28. (4) Given $P=\alpha V$

Work done, $w=\int_{V}^{m V} P d V$
$=\int_{V}^{m V} \alpha V d V=\frac{\alpha V^{2}}{2}\left(m^{2}-1\right)$.
29. (1) Given, $V_{1}=V \quad V_{2}=2 V$
$T_{1}=27^{\circ}+273=300 \mathrm{~K} \quad T_{2}=$?
From charle's law
$\frac{V_{1}}{T_{1}}=\frac{V_{2}}{T_{2}}(\because$ Pressure is constant $)$
or, $\frac{V}{300}=\frac{2 V}{T_{2}}$
$\therefore T_{2}=600 \mathrm{~K}=600-273=327^{\circ} \mathrm{C}$
30. (3) As we know,
$\gamma=\frac{C_{p}}{C_{v}}=1+\frac{2}{f}$, where $f=$ degree of freedom
(1) Monatomic, $f=3$
$\therefore \gamma=1+\frac{2}{3}=\frac{5}{3}$
(2) Diatomic rigid molecules, $f=5$
$\therefore \gamma=1+\frac{2}{5}=\frac{7}{5}$
(3) Diatomic non-rigid molecules, $f=7$
$\therefore \gamma=1+\frac{2}{7}=\frac{9}{7}$
(4) Triatomic rigid molecules, $f=6$
$\therefore \gamma=1+\frac{2}{6}=\frac{4}{3}$
31. (1) $W=300 \mathrm{~J} f=3$
$\Delta U=\frac{f}{2} W$
$\Delta U=\frac{3}{2} \times 300 \Rightarrow \Delta U=450 J$
$Q=W+\Delta U=300+450=750 \mathrm{~J}$.
32. (3) $d Q=d u+d W$
$n C d T=n C_{V} d T+d W$
$\Delta U>0$ and $\Delta W>0$
$\therefore C>C_{V}$.
33. (2) $T V^{\gamma-1}=C$
$\gamma-1=n$
$\gamma=\frac{4 \times \frac{7}{2} R+2 \times \frac{5}{2} R}{4 \times \frac{5}{2} R+2 \times \frac{3}{2} R}=\frac{19}{13}$
$n=\frac{6}{13}$.
34. (3) From $P-V$ graph $P \propto \frac{1}{V}, T=$ constant and pressure is increasing from 2 to 1 .
35. (2) i) Work done in the process $B \rightarrow C, W=0$ Volume is constant and heat given to the system $Q=50 \mathrm{~J}$ (given)
Hence, by the first law of thermodynamics, the change in the internal energy is
$\Delta U=\left(U_{C}-U_{B}\right)=Q-W=50 J$
$U_{C}=U_{B}+\Delta U=30+50=80 \mathrm{~J}$.
Section - B (Attempt Any 10 Questions)
36. (3) $P V=n R t=\frac{M}{M_{0}} R T$
$P=\frac{M}{V} \frac{R T}{M_{0}}=d \frac{R T}{M_{0}}$
$2 P=d^{\prime} \frac{R(T / 3)}{M_{0}}$
$2 d \frac{R T}{M_{0}}=\frac{d^{\prime} R(T / 3)}{M_{0}} \quad d^{\prime}=6 d$
37. (1) Here, $V_{1}=5.6$ litre, $V_{2}=0.7$ litre

Number of moles of $\mathrm{He}, n=\frac{5.6}{22.4}=\frac{1}{4}$

If T_{1}, T_{2} are the initial and final temperature, then from $T_{2} V_{2}^{\gamma-1}=T_{1} V_{1}^{\gamma-1}$
$T_{2}=T_{1}\left(\frac{V_{1}}{V_{2}}\right)^{\gamma-1}=T_{1}\left(\frac{5.6}{0.7}\right)^{5 / 3-1}=T_{1} \times 8^{2 / 3}=4 \mathrm{~T}_{1}$
Work done $=\frac{n R\left(T_{2}-T_{1}\right)}{\gamma-1}$
$W=\frac{\frac{1}{4} \times R\left(4 T_{1}-T_{1}\right)}{\frac{5}{3}-1}=\frac{1}{4} \times \frac{3}{2} \times R \times 3 T_{1}=\frac{9}{8} R T_{1}$
38. (1) Work done in the process $B \rightarrow C, W=0$

Volume is constant and heat given to the system $Q=50 \mathrm{~J}$ (given)
Hence, by the first law of thermodynamics, the change in the initial energy is
$\Delta U=\left(U_{C}-U_{B}\right)=Q-W=50 J$
$U_{C}=U_{B}+\Delta U=30+50=80 J$
For the process $\mathrm{A} \rightarrow \mathrm{B}, \Delta U=U_{B}-U_{A}$
$=30 \mathrm{~J}$ and $W=$ area $A B E D=\Delta E-\triangle A$
$=2 \times 30=60 \mathrm{~J}$
$\therefore Q=\Delta U+W=30+60=90 J$
For the process $\mathrm{C} \rightarrow \mathrm{A}, \Delta U=U_{A}-U_{C}=0-80$
$\Rightarrow \Delta U=-80 J$
and $W=$ area $A C E D=\operatorname{area} A C B+$ area $A B E D$
$W=\left(\frac{1}{2} \times A B \times B C\right)+(D E-D A)$
$W=\left(\frac{1}{2} \times 2 \times 60\right)+(2 \times 30)=120 J$
Since in this process the volume decreases, the work will be negative ($W=120 \mathrm{~J}$) that is, the work will be done on the system. Now, by the first law of thermodynamics, will have

$$
Q=\Delta U+W=-80-120=-200 J
$$

Since it is negative, this heat is given out by the system.
39. (2) Kinetic theory of N molecule of gas $E=\frac{3}{2} N k T$

Initially $E_{1}=\frac{3}{2} N_{1} k T_{1}$ and finally $E_{2}=\frac{3}{2} N_{2} k T_{2}$
But according to problem
$E_{1}=E_{2}$ and $N_{2}=2 N_{1}$
$\therefore \frac{3}{2} N_{1} k T_{1}=\frac{3}{2}\left(2 N_{1}\right) k T_{2} \Rightarrow T_{2}=\frac{T_{1}}{2}$

Since the kinetic energy constant
$\frac{3}{2} N_{1} k T_{1}=\frac{3}{2} N_{2} k T_{2} \Rightarrow N_{1} T_{1}=N_{2} T_{2}$
$\therefore N T=\mathrm{constant}$
From the ideal gas equation of N molecule $\mathrm{P} V=$ NkT
$\Rightarrow P_{1} V_{1}=P_{2} V_{2} \quad \therefore P_{1}=P_{2}$
[As $V_{1}=V_{2}$ and $N T=$ constant]
[As $f_{1}=5$ (for oxygen) and $f_{2}=3$ (for argon)]
40. (1) For isothermal process
$P_{1} V_{1}=P_{2} V_{2}$
$4 P_{0} V_{0}=P_{2} \times V_{0}$
$P_{2}=4 P_{0}$
For adiabatic process
$P_{1} V_{1}^{\gamma}=P_{2} V_{2}^{\gamma}$
$P_{2}=P_{1}\left(\frac{V_{1}}{V_{2}}\right)^{\gamma}=P_{0}\left(\frac{4 V_{0}}{V_{0}}\right)^{3 / 2}$
$P_{2}=8 P_{0}$.
41. (4) Number of moles in first vessel $\mu_{1}=\frac{P_{1} V}{R T_{1}}$ and number of moles in the second vessel $\mu_{2}=\frac{P_{2} V}{R T_{2}}$

If both vessels are joined together then the quantity of gas remains same i.e., $\mu=\mu_{1}+\mu_{2}$
$\frac{P(2 V)}{R T}=\frac{P_{1} V}{R T_{1}}+\frac{P_{2} V}{R T_{2}}$
$\Rightarrow \frac{P}{R T}=\frac{P_{1}}{2 T_{1}}+\frac{P_{2}}{2 T_{2}}$
42. (1)
43. (1) According to questions $\mathrm{VT}=\mathrm{K}$
we also know that $\mathrm{PV}=\mathrm{nRT}$
$\Rightarrow T=\left(\frac{P V}{n R}\right)$
$\Rightarrow V\left(\frac{P V}{n R}\right)=k \Rightarrow P V^{2}=K$
$\because C=\frac{R}{1-x}+\mathrm{C}_{\mathrm{v}}$ (For polytropic process)
$C=\frac{R}{1-2}+\frac{3 R}{2}=\frac{R}{2}$
$\therefore \Delta Q=n C \Delta T$
$=\frac{R}{2} \times \Delta T \quad$ [here, $\mathrm{n}=1$ mole]
44. (3) In adiabatic process
$P V^{\gamma}=$ constant
$\therefore P\left(\frac{m}{\rho}\right)^{\gamma}=\operatorname{cosntant} \quad\left(\because V=\frac{m}{\rho}\right)$
As mass is constant
$\therefore P \propto \rho^{\gamma}$
If P_{i} and P_{f} be the initial and final pressure of the gas and ρ_{i} and ρ_{f} be the initial and final density of the gas. Then
$\frac{P_{f}}{P_{i}}=\left(\frac{\rho_{f}}{\rho_{i}}\right)^{\gamma}=(32)^{7 / 5}$
$\Rightarrow \frac{n P_{i}}{P_{i}}=\left(2^{5}\right)^{7 / 5}=2^{7}$
$\Rightarrow n=2^{7}=128$.
45. (4) Using, $\gamma_{\text {mixture }}=\frac{n_{1} C_{p_{1}}+n_{2} C_{p_{2}}}{n_{1} C_{v_{1}}+n_{2} C_{v_{2}}}$
$\Rightarrow \frac{n_{1}}{\gamma_{1}-1}+\frac{n_{2}}{\gamma_{2}-1}=\frac{n_{1}+n_{2}}{\gamma_{m}-1}$
$\Rightarrow \frac{3}{\frac{4}{3}-1}+\frac{2}{\frac{5}{3}-1}=\frac{5}{\gamma_{m}-1}$
$\Rightarrow \frac{9}{1}+\frac{2 \times 3}{2}=\frac{5}{\gamma_{m}-1} \Rightarrow \gamma_{m}-1=\frac{5}{12}$
$\Rightarrow \gamma_{m}=\frac{17}{12}=1.42$
46. (2) $\Delta U=\frac{P_{2} V_{2}-P_{1} V_{1}}{\gamma-1}=\frac{12 \times 10^{3}-20 \times 10^{3}}{\frac{7}{5}-1}$

$$
=-20000 \mathrm{~J}=-20 \mathrm{~kJ} \text {. }
$$

47. (2) $W=\int P d V=\int \frac{R T}{V} d V$

Since $V=k T^{2 / 3} \Rightarrow d V=\frac{2}{3} K T^{-1 / 3} d T$

Eliminating K, we find $\frac{d V}{V}=\frac{2}{3} \frac{d T}{T}$
Hence
$W=\int_{T_{1}}^{T_{2}} \frac{2}{3} \frac{R T}{T} d T=\frac{2}{3} R\left(T_{2}-T_{1}\right)=\frac{2}{3} R(30)=20 R$.
48. (2)

For path iaf,
$Q_{1}=50 \mathrm{cal}, W_{1}=20 \mathrm{cal}$
By first law of thermodynamics,
$\Delta U=Q_{1}-W_{1}=50-20=30 \mathrm{cal}$.
For path ibf
$Q_{2}=36 \mathrm{cal}$
$W_{2}=$?
$\Delta U_{i b f}=Q_{2}-W_{2}$
Since, the change in internal energy does not depend on the path, therefore $\Delta U_{i a f}=\Delta U_{i b f}$
$\Delta U_{i a f}=\Delta U_{i b f}$
$\Rightarrow 30=Q_{2}-W_{2}$
$\Rightarrow W_{2}=36-30=6 \mathrm{cal}$.
49. (2) Change in internal energy from $A \rightarrow B$ is
$\Delta U=\frac{f}{2} \mu R \Delta T=\frac{f}{2}\left(P_{f} V_{f}-P_{i} V_{i}\right)$

$$
=\frac{3}{2}\left(2 P_{0} \times 2 V_{0}-P_{0} \times V_{0}\right)=\frac{9}{2} P_{0} V_{0}
$$

Work done in process $\mathrm{A} \rightarrow \mathrm{B}$ is equal to the Area covered by the graph with volume axis i.e.,
$W_{A \rightarrow B}=\frac{3}{2}\left(P_{0}+2 P_{0}\right) \times\left(2 V_{0}-V_{0}\right)=\frac{3}{2} P_{0} V_{0}$
H e n c e ,
$\Delta Q=\Delta U+\Delta W=\frac{9}{2} P_{0} V_{0}+\frac{3}{2} P_{0} V_{0}=6 P_{0} V_{0}$.
50. (3) Here, $Q_{1}=600 \mathrm{~J}, \mathrm{Q}_{2}=-400 \mathrm{~J}, \mathrm{Q}_{3}=-300 \mathrm{~J}$ and $\mathrm{Q}_{4}=200 \mathrm{~J}, \mathrm{~W}_{1}=300 \mathrm{~J}, \mathrm{~W}_{2}=-200 \mathrm{~J} . \mathrm{W}_{3}=$ $-150 \mathrm{~J}, \mathrm{~W}_{4}=$?
$\mathrm{Q}=\mathrm{Q}_{1}+\mathrm{Q}_{2}+\mathrm{Q}_{3}+\mathrm{Q}_{4}=(600-400-300+$ 200) $=100 \mathrm{~J}$
$=\left(\mathrm{W}_{4}=50\right) \mathrm{J}$
As the process, undergone is cycle, $\mathrm{dU}=0$.
As $d U+d W=d Q$
$\therefore 0+\mathrm{W}_{4}-50=100$
$W_{4}=100+50=150 \mathrm{~J}$.

CHEMISTRY

SECTION - A (35 Questions)

51. (2)

If the compound rotates the plane polarised light to the right, i.e., clockwise direction, it is called dextrorotatory (Greek for right rotating) or the d -form and is indicated by placing a positive $(+)$ sign before the degree of rotation. If the light is rotated towards left (anticlockwise direction), the compound is said to be laevorotatory or the lform and a negative (-) sign is placed before the degree of rotation.
52. (4)

(Williamson's synthesis)
53. (1)

In chlorobenzene -Cl group is weakly deactivating but act as ortho and para director.
54. (1)

55. (4)

56. (1)

Aryl chlorides and bromides can be easily preparedby electrophilic substitution of arenes with chlorineand bromine respectively in the presence of Lewis acid catalysis like iron or iron (III) chloride. The ortho and para isomers can be easily separated due to large difference in their melting points. Reactions with iodine are reversible in nature and require the presence of
an oxidising agent $\left(\mathrm{HNO}_{3}, \mathrm{HIO}_{4}\right)$ to oxidise the HI formed during iodination. Fluoro compounds are not prepared by this methoddue to high reactivity of fluorine.
57. (4)

Ketone and aldehyde
58. (2)

The sugar moiety in DNA molecule is β-D-2- deoxyribose whereas in RNA molecule, it is β-D-ribose. Nucleotide is a nucleoside linked to phosphoric acid at 5^{1} - position of sugar moiety
59. (3)

60. (3)

Rate of $\mathrm{ArS}_{\mathrm{N}} 2$ reaction α-electron withdrawing group present on benzene ring.
61. (2)
$A-(r), B-(p, s), C-(p), D-(p, q)$
62. (3)

Insulin is an example of globular protein.
63. (1)

Friedel craft alkylation reactions via rearrangement of isobutyl cation into tertiary butyl cation.

64. (4)

Decreasing order of reactivity of alkyl halide toward dehydro halogenation ($\mathrm{E}_{1} \& \mathrm{E}_{2}$ elimination) as $3^{\circ}>2^{\circ}>1^{\circ}$.
65. (1)

In DNA the complimentary base are Adenine and thymine. Guanine and cytosine. The genetic information for cell is contained in the sequence of bases A, T, G and C in DNA molecule.
66. (3)

All those carbohydrates which reduce Fehling's solution and Tollens' reagent are referred to as reducing sugars
67. (1)

I and II pairs are correctly matched while III and IV are not.
68. (4)

Cyclohexylamine
69. (1)

Glucose contains an aldehyde group. It is oxidised into acidic group by bromine water and gluconic acid is formed

70. (4)

Six carbon atoms are arranged in straight chain
71. (2)

72. (2)
a, c, e
73. (4)

(Fischer formula)
74. (4)

In lysine 1-amino group is more than carboxylic group

75. (3)

Assertion is correct statement but reason is wrong statement.
76. (1)

Assertion and reason both are correct statements and reason is correct explanation for assertion.
77. (1)

Except alanine, all amino acids are essential amino acids which cannot be synthesised in the body and must be obtained through diet.
78. (3)

During denaturation 2° and 3° structures are destroyed but 1° structure remains intact.
79. (2)

80. (4)

$$
\mathrm{CHCl}_{3}+2[\mathrm{H}] \xrightarrow{\mathrm{Zn} / \mathrm{HCl}} \mathrm{CH}_{2} \mathrm{Cl}_{2}+\mathrm{HCl}
$$

81. (2)

Beri-Beri
82. (4)

The function of enzymes in the living system is to catalyse biochemical reactions which occur in living systems. e.g. invertase, pepsin, amylase.

83. (1)

Lactose is a disaccharide
84. (1)

Polysaccharides
85. (3)

SECTION - B (Attempt Any 10 Questions)

86. (2)

DNA is responsible for transmission of heredity character.
87. (2)

It is a branched chain polymer of α-D-glucose units in which chain is formed by $\mathrm{Cl}-\mathrm{C} 4$ glycosidic linkage whereas branching occurs by C1-C6 glycosidic linkage.
88. (2)

Polychloro derivative having higher density than water. But monochloro derivative having lower density than water.
89. (1)

Free radical substitution reaction takes place.
90. (1)
(i) and (iii)
91. (2)

To explain the properties which can not be explained by open chain structure of glucose it was proposed that one of the- OH groups may add to the -CHO group and form a cyclic hemiacetal structure as shown below.

92. (3)

93. (1)

Decreasing order of reactivity of alkyl halide toward $\mathrm{S}_{\mathrm{N}} 2$ as $1^{\circ}>2^{\circ}>3^{\circ}$.
94. (4)

Elimination reaction in presence of small size base follow Saytzeff rule (More substituted alkene is the major product.
95. (4)

96. (4)

The boiling points of isomeric haloalkanes decrease with increase in branching. For example, 2-bromo-2-methylpropane has the lowest boiling point among the three isomers

446
b.p / K

453
m.p/K 256

249

448
323
97. (3)

The carbon-halogen bonds of aryl halides are both shorter and stronger (due to possibility of resonance) than the carbon-halogen bonds of $\mathrm{R}-\mathrm{X}$ and in this respect as well as in their chemical behaviour, they resemble vinyl halides $\left(\mathrm{CH}_{2}=\mathrm{CHX}\right)$ more than alkyl halides.

Aryl halides

Vinyl halides

Halogen attached to C is sp^{2} hybridised C , $\mathrm{C}-\mathrm{X}$ bond is shorter and stronger because of partial double bond character due to delocalisation of electrons on halogens
98. (2)

99. (1)

Tertiary $>$ secondary $>$ primary
100. (1)

