PHYSICS

SECTION - A (35 Questions)

1. (4) When capacitor's are connected in parallel $Q \propto C, E \propto C$
$\frac{Q_{2}}{Q_{1}}=\frac{C_{2}}{C_{1}} \quad \frac{E_{2}}{E_{1}}=\frac{C_{2}}{C_{1}} \quad Q_{2}=\frac{3 Q}{2} \quad E_{2}=\frac{3 E}{2}$
2. (3) Initial angular frequency $\omega_{0}=\sqrt{\frac{K}{M}}$

Final angular frequency $\omega^{\prime}=\sqrt{\frac{K}{M+m}}$ e 1999
Now applying conservation of linear momentum
$M \times A_{0} \sqrt{\frac{K}{M}}=A^{\prime} \sqrt{\frac{K}{M+m} \times(M+m)^{2}}$
$A^{\prime}=A_{0} \sqrt{\frac{M}{M+m}}$
03. (2)

$r_{2}=0^{0}$
$r_{1}=A=30^{\circ}$
$i=60^{\circ} \quad \therefore \mu=\frac{\sin 60^{\circ}}{\sin 30^{\circ}}=\sqrt{3}$
04. (2) Heat produced $\mathrm{H}=f^{2} \mathrm{Rt}$
$\Rightarrow 160=5^{2} \times R \times 10$
$\Rightarrow R=\frac{160}{250}=\frac{16}{25}=0.64 \Omega$
05. (2)
06. (1) Balanced Wheatstone bridge
$R_{e f f}=\frac{12 \times 6}{18}+2=6 \Omega$
$l=\frac{12}{R_{e f f}}=\frac{12}{6}=2 \mathrm{~A}$
07. (4) $m v=F t$
$F=\frac{m v}{t}$
08. (2) Two forces are perpendicular to each other therefore resultant of the two forces is $R=\sqrt{T^{2}+T^{2}}=T \sqrt{2}$
09. (3) According to Stefan's law, the energy emitted by a body per second is directly proportional to the fourth power of the temperature of the body.

Here, the temperature of blue glass is more than that of red glass, so it will look bright.
10. (3) $F=q E$
$W=F d \cos \theta$
$12=\mathrm{qEd} \cos \theta$
$12=0.4 \mathrm{E} \times 2 \times \frac{1}{2}$
$E=30 \mathrm{~N} / \mathrm{C}$
(2) $\frac{5 V}{4 L_{1}}=\frac{V}{L} \Rightarrow L_{1}=\frac{5 L}{4}$
12.
(4) $C=C_{v}+\frac{R}{1-n}$
$C=\frac{5 R}{2}-R=\frac{3 R}{2}$
13. (2) (K.E) $)_{\max }=6-4=2 \mathrm{eV}$
14. (3)
15. (3) $\theta=w_{0} t+\frac{1}{2} \alpha t^{2}$

Given $w_{0}=0$
$\theta=\frac{1}{2} \alpha t^{2}$

In first 3 seconds makes 10 rotations
So $\theta=10 \times 2 \pi=20 \pi$
$20 \pi=\frac{1}{2} \propto(3)^{2}$
In first 6 seconds let us assume it makes n rotations so $\theta=n \times 2 \pi=2 \pi n$
$2 \pi n=\frac{1}{2} \propto(6)^{2}$
Dividing equation (i) by (ii)
$n=40$ rotations.
So from 3 sec to 6 sec no. of rotation is $40-10=30$ rotation.
16.
(3) Stress $=\eta \cdot \frac{d v}{d x} \Rightarrow 10^{-3} \times \frac{5-0}{10}=0.5 \times 10^{-3}$
17. (3) As $\lambda=\frac{v}{f}=\frac{330}{330}=1 m$

So first resonance will be obtained at $\frac{\lambda}{4}=25 \mathrm{~cm}$
18. (1)

$+f=m a$
$(\mathrm{F}-f) \mathrm{R}=\mathrm{MR}^{2} \alpha$
$a=\mathrm{R} \alpha$
on solving (i), (ii) and (iii) $f=0$
19. (3) For a solenoid $B=\mu_{0} n I$, where n is number of turns per unit length.
20. (3) For convex lens $\frac{1}{v}-\frac{1}{u}=\frac{1}{f}$
$\Rightarrow \frac{1}{v}=\frac{1}{u}+\frac{1}{f}$
on comparing $y=\mathrm{m} x+\mathrm{c}$

21. (2) Surface tension $=\frac{F}{l}=\frac{M L T^{-2}}{L}=M T^{-2}$
22. (1) $\frac{p^{2}}{2 m}=m g h$ or $\frac{p}{\sqrt{2 g h}}$
23. (3) Since $P-V$ indicator diagram is given, so work done gas is area under the cyclic diagram.
$\Delta W=$ work done by gas $=\frac{1}{2}(5-2) \times(6-1)=7.5 \mathrm{~J}$
24. (4) The magnetic moment of a diamagnetic atom is equal to zero.
25. (1) Electric field is always perpendicular to equipotential surface.
26. (3)
27. (1) According to question, one half of its kinetic energy is converted into heat in the wood.
$\frac{1}{2} m v^{2} \times \frac{1}{2}=m s \Delta T$
$\Rightarrow \Delta T=\frac{v^{2}}{4 \times s}=\frac{210 \times 210}{4 \times 4.2 \times 0.03 \times 1000}=87.5^{\circ} \mathrm{C}$
28. (1) Width of central maximum
$=\frac{2 \lambda D}{a}=\frac{2 \times 6250 \times 10^{-10} \times 0.5}{2 \times 10^{-4}}$
$=3125 \times 10^{-6} \mathrm{~m}=312.5 \times 10^{-3} \mathrm{~cm}$
29. (2) The time taken to move from equilibrium position to extreme position is $\mathrm{T} / 4=2 \mathrm{~s}$. As it takes $1 / 2$ s to reach P , to move from P to extreme position it takes 1.5 s and for return journey another 1.5 s . Hence after 3 s it will be again at P .
30. (3) $I_{A}=\frac{1}{2} m_{A} r^{2}$
$\Rightarrow I_{A}=\frac{1}{2} \pi r^{4} t \rho$
Similarly $I_{B}=\frac{1}{2} \times\left(\pi 16 r^{2} \frac{t}{4} \rho\right) 16 r^{2}=\frac{64 \pi r^{4} t \rho}{2}$
$\frac{I_{A}}{I_{B}}=\frac{\frac{1}{2} \pi r^{4} t \rho}{\frac{64 \pi r^{4} t \rho}{2}} \Rightarrow 64 I_{A}=I_{B} \Rightarrow I_{B}>I_{A}$
31. (4) Zero. When the object is at the centre of curvature, the image will also be at the centre of curvature.
32.
(4) $\lambda=\frac{1}{\sqrt{2} \pi n d^{2}}$
33. (3) Frequency of emitted radiation
$v=R C\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right)$
$v=R C \frac{5}{36}$
34. (3) K.E. $=\mathrm{E}_{\mathrm{T}}$ \& P.E. $=2 \mathrm{E}_{\mathrm{T}}$
35. (2) Impuse (I) = change in momentum
$\mathrm{I}=\mathrm{mv}_{2}-\mathrm{mv}_{1}=\mathrm{m}\left(\mathrm{v}_{2}-\mathrm{v}_{1}\right)$
Increase in K.E. $=$
$\frac{1}{2} m v_{2}^{2}-\frac{1}{2} m v_{1}^{2}=\frac{1}{2} m\left(v_{2}-v_{1}\right)\left(v_{2}+v_{1}\right)=\frac{I\left(v_{1}+v_{2}\right)}{2}$

SECTION - B (Attempt Any 10 Questions)

36. (4) $\chi \propto \frac{1}{T}$ and let $\frac{1}{T}=b$ so $\chi \propto b$
\Rightarrow straight line
37. (2) As we know slope of stopping potential versus frequency is $h / e \Rightarrow h=$ slope $\times e$
38. (4)
39.

(2) $R_{B}^{2}=\frac{F L}{Y_{B} \pi \Delta L}, R_{S}^{2}=\frac{F L}{Y_{S} \pi \Delta L}$
$\therefore \frac{R_{B}^{2}}{R_{S}^{2}}=\frac{Y_{S}}{Y_{B}}=\frac{2 \times 10^{10}}{10^{10}}=2$
$R_{B}=\sqrt{2} R_{S} \Rightarrow R_{S}=\frac{R_{B}}{\sqrt{2}}$.
40. (3) $\frac{\Delta V}{V}=0.1 \%$
$\mathrm{P}=\rho g h$
Since 1999
$B=-\frac{P}{\Delta V / V}$
$P=-B \times \frac{\Delta V}{V}=|B| \times \frac{\Delta V}{V}$
$\rho \mathrm{gh}=|\mathrm{B}| \times \frac{\Delta V}{V}$
$h=\frac{|B| \times \frac{\Delta V}{V}}{\rho g}=\frac{9 \times 10^{8}}{10^{3} \times 10} \times \frac{0.1}{100}=90 \mathrm{~m}$
41. (2) $\frac{\text { Magnetic moment }}{\text { Angular momentum }}=\frac{Q}{2 M} \Rightarrow \frac{Q}{2 M} l \omega=\mu$
$=\frac{Q}{2 M} \frac{M L^{2}}{3} \omega \Rightarrow=\frac{\pi f Q L^{2}}{3}$
42. (2) $R=\frac{V^{2}}{P}=\frac{40 \times 40}{20}=80 \Omega$
$i=\frac{40}{80}=0.5 \mathrm{~A}$
$i_{r m s}=0.5 A=\frac{V_{r m s}}{Z}=\frac{200}{Z}$
$Z=400 \Omega$
$\sqrt{R^{2}+X_{c}^{2}}=400$
$X_{C}^{2}=(400)^{2}-(80)^{2} \Rightarrow X_{C}=100 \sqrt{15.36}$
43. (2) Potential energy of particle at the centre of square
$=-4\left(\frac{G M m}{a / \sqrt{2}}\right)$
$\therefore-4\left(\frac{G M m}{a / \sqrt{2}}\right)+\frac{1}{2} m \mathrm{v}^{2}=0 \Rightarrow \mathrm{v}^{2}=\frac{8 \sqrt{2} G M}{a}$.
44. (2) $\Rightarrow m_{1} v_{1}=m_{2} v_{2}$
$\Rightarrow \frac{m_{1}}{m_{2}}=\frac{v_{2}}{v_{1}}$
$\frac{R_{1}}{R_{2}}=\left(\frac{v_{2}}{v_{1}}\right)^{1 / 3} \quad\left(\therefore m=\rho \frac{4}{3} \pi R^{3}\right)$
$\Rightarrow \frac{R_{1}}{R_{2}}=\left(\frac{1}{2}\right)^{1 / 3}$
45. (3) The change in temperature due to heating, changes the overall current, hence it changes overall I-V characteristics of the diode.
46. (1) For diamagnetic $\chi>1$
$\mu_{t}<1$
47. (1)

$\frac{2}{R}=\frac{x}{100-x}$
Now interstage
$\frac{R}{x+20}=\frac{2}{80-x}$
$\frac{R}{2}=\frac{x+20}{80-x} \Rightarrow \frac{2}{R}=\frac{80-x}{x+20}$
Solve (i) and (ii)
$(x+20) x(100-x)(80-x)$
$x=40$
Put the value of x and we get $\mathrm{R}=3 \Omega$
48. (2) $\Delta \mathrm{L}=\frac{\mathrm{WL}}{2 \mathrm{AY}}=\frac{\rho A L g L}{2 \mathrm{AY}}=\frac{\rho g L^{2}}{2 \mathrm{Y}}$
49. (2) The bullets are fired at the same initial speed
$\frac{H}{H^{\prime}}=\frac{u^{2} \sin ^{2} 60^{\circ}}{2 g} \times \frac{2 g}{u^{2} \sin ^{2} 30^{\circ}}=\frac{\sin ^{2} 60^{\circ}}{\sin ^{2} 30^{\circ}}$
$=\frac{(\sqrt{3} / 2)^{2}}{(1 / 2)^{2}}=\frac{3}{1}$
50. (4) $E=h v=E_{3}-E_{1} \Rightarrow 13.6\left[\frac{1}{1^{2}}-\frac{1}{3^{2}}\right]=12.1 \mathrm{eV}$

Therefore, stopping potential
$\mathrm{eV}_{0}=h \nu-\phi_{0}$
$=12.1-5.1$
$\left[\because\right.$ work function $\left.\phi_{0}=5.1\right]$
$\mathrm{V}_{0}=7 \mathrm{~V}$

CHEMISTRY

SECTION - A (35 Questions)

51. (1) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+4 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow$

$$
\mathrm{K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+4 \mathrm{H}_{2} \mathrm{O}+3[\mathrm{O}]
$$

$\left[\mathrm{SO}_{2}+\mathrm{H}_{2} \mathrm{O}+[\mathrm{O}] \rightarrow \mathrm{H}_{2} \mathrm{SO}\right] \times 3$ Since 1999
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+\mathrm{H}_{2} \mathrm{SO}_{4}+3 \mathrm{SO}_{2} \rightarrow$
$\mathrm{K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{H}_{2} \mathrm{O}$
Thus X, Y and Z of $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{SO}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ respectively are $1,3,1$.
52. (1) Increases one by one from IA to VIIA
53. (3) The reaction of propene with HOCl proceeds via the addition of $\mathrm{Cl}+$ in the first step. HOCl has $\mathrm{Cl}+$ and OH -ions.
The reaction takes place as follows

54. (4) I is super saturated, $I I$ is saturated and $I I I$ is unsaturated solution. In solution I and II, amount of dissolved substance is same.
55. (3) Statement(3) is correct for resonance because resonance affects bond lengths but not bond angles while (1), (2) and (4) are false statements.
Due to resonance, delocalisation of electrons in every bond which is participating in resonance attains partial double character. Thus, their bond length decreases but causes no effect on bond angle.
56. (1) At cathode : $2 \mathrm{H}^{+}+2 \mathrm{e}^{-} \rightarrow \mathrm{H}_{2}$ At anode : $2 \mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+1 / 2 \mathrm{O}_{2}+2 \mathrm{e}^{-}$
57. (4) σ bond of $\mathrm{O}=\mathrm{O}$ is formed by axial overlapping of $p-$ p orbital while π bond is formed by sidewise overlapping of $\mathrm{p}-\mathrm{p}$ orbital.
58. (4)

Formation of N -acetylated product is due to presence of lone pair of electrons on nitrogen atom.
59. (2) $\mathrm{r}=\mathrm{k}[\mathrm{A}][\mathrm{B}]$

If B is in large excess then rate becomes independent of $[\mathrm{B}]$ and will depend only on $[\mathrm{A}]$. Therefore, the order reaction with respect to $[\mathrm{A}]$ is one.
60. (1) The correct match is. A-IV, B-III, C-I, D-II
61. (4)

So, due to (-R) effect in (4) it is more acidic.
62. (2) Assertion is true but Reason is false.

The correct form of Reason is :
According to Le chatelier's principle, endothermic reaction favours increase in temperature and exothermic reaction favours decrease in temperature.
63. (1) Methylphenylether is obtained by the reaction of phenolate ions and methyl iodide.

64. (1) The correct match is A-II, B-III, C-I, D-IV
65. (2) The complete reaction can be written as

\therefore Strongly activating group generally dominates over the deactivating group and -OH is ortho/paradirecting group and p -product predominants
66. (3) They are chemically reactive than the pure metal
67. (1) Grignard reagent is, $\mathrm{R}-\mathrm{Mg}-\mathrm{X}$. Tetramethyl lead, $\mathrm{Pb}\left(\mathrm{CH}_{3}\right)_{4}$ is sigma (σ) bonded complex.
68. (2) Acetone reacts with phenyl magnesium bromide followed by acidic hydrolysis to give 2-phenyl propan-2-ol.
The given reaction is as follows

69. (3) If Assertion is true statement but Reason is false
70. (2) Among the given statements A, B and E are correct while statements C and D are incorrect. Their correct form of these statements are :
All the hydrogen atom are not in the same plane in diborane.
The terminal $\mathrm{B}-\mathrm{H}$ bonds are regular $2 \mathrm{c}-2 \mathrm{e}$ bonds.
71. (1) Formula of the compound BaCO_{3} suggests that 3 moles of oxygen atoms are contained in one mole of BaCO_{3}.
$\therefore 1.5$ mole will be contained in 0.5 mole of BaCO_{3}.
72. (3) $r_{n}=\frac{0.529 n^{2}}{Z} \AA$

Since 1999
$\therefore \quad r_{3}=\frac{0.529 \times 9}{Z} \AA ; r_{4}=\frac{0.529 \times 16}{Z} \AA$
$\frac{r_{3}}{r_{4}}=\frac{\frac{0.529 \times 9}{Z}}{\frac{0.529 \times 16}{Z}} ; r_{3} / r_{4}=9: 16$
CAREER INST

74. (2) $\mathrm{C}-\mathrm{C}, \mathrm{C}=\mathrm{C}$ and $\mathrm{C} \equiv \mathrm{C}$ bond lengths are $1.54 \AA, 1.34 \AA$ and $1.20 \AA$ respectively. In benzene, $\mathrm{C}=\mathrm{C}$ is $1.40 \AA$. So, the correct order of their $\mathrm{C}-\mathrm{C}$ bond length is
$\mathrm{C}_{2} \mathrm{H}_{2}<\mathrm{C}_{2} \mathrm{H}_{4}<\mathrm{C}_{6} \mathrm{H}_{6}<\mathrm{C}_{2} \mathrm{H}_{6}$.
75. (3) 2 s orbital has lower energy than $2 p$.
76. (3) The solution of borax is alkaline in nature. This is due to its hydrolysis.
$\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}+7 \mathrm{H}_{2} \mathrm{O} \rightleftharpoons \underset{\text { strongalkali }}{2 \mathrm{NaOH}}+\underset{\text { weakacid }}{4 \mathrm{H}_{3} \mathrm{BO}_{3}}$
77. (2) $l=3$ corresponds to f -subshell. This subshell contains maximum 14 electrons but an orbital can contain maximum 2 electrons only.
78. (3) Isolated system has no interaction with its surroundings. The boundary is sealed. Neither matter nor energy can be exchanged with surroundings.
79. (2) Mixture of aniline and water can be separated by simple distillation as they have sufficiently high difference in their boiling point.
Boiling point of chloroform $=334 \mathrm{~K}$
Boiling point of aniline $=457 \mathrm{~K}$
80. (3) Glucose gives silver mirror with ammonical silver nitrate because of the presence of -CHO group (aldehyde group) in the structure of glucose.
81. (1) $\mathrm{H}_{3} \mathrm{PO}_{2}$ is hypophosphorus acid.
82. (4) First member of each transition series i.e, Sc, y, La and Ad do not show variable valency. They show only +3 oxidation state.
83. (4)

	AB	+	CD	\rightleftharpoons
Initial moles	1	1	0	AD
(4)	CB			
At equilibrium	$1-\frac{3}{4}=\frac{1}{4}$	$1-\frac{3}{4}=\frac{1}{4}$	$\frac{3}{4}$	$\frac{3}{4}$

$K_{c}=\frac{[A D][C B]}{[A B][C D]}=\frac{3 / 4 \times 3 / 4}{1 / 4 \times 1 / 4}=9$
84. (4) In elemental state, oxidation state is zero.
85. (3) A ring expansion creates the six membered carbocation intermediate which is more stable than cyclopentyl methyl membered carbocation.

SECTION - B (Attempt Any 10 Questions)

86. (3) Among the given statements, Statement B and D are incorrect whereas A, C and E are correct. The correct form of statements B and D are :

Azeotropic mixture are binary mixture having same composition in liquid and vapour phase.

Chloroform and Diethyl ether shows negative deviation from Raoult's law.
87. (3) ' A ' $=\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$;
$\mathrm{B}=\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CH} ; \mathrm{C}=\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$
'C' gives immediate turbidity with Lucas reagent.
88. (2) $\mathrm{d}^{6}-\mathrm{t}_{2 g}^{2,2,2} \mathrm{eg}^{0,0}$ (In low spin)
C.F.S.E. $=-0.4 \times \Delta_{0}+3 \mathrm{P}=-\frac{12}{5} \Delta_{0}+3 \mathrm{P}$
89. (2) $2 \mathrm{NO}_{2} \underset{\mathrm{k}_{2}}{\stackrel{\mathrm{k}_{1}}{\rightleftharpoons}} \mathrm{~N}_{2} \mathrm{O}_{4}$

Rate $=-\frac{1}{2} \frac{\mathrm{~d}\left[\mathrm{NO}_{2}\right]}{\mathrm{dt}}=\mathrm{k}_{1}\left[\mathrm{NO}_{2}\right]^{2}-\mathrm{k}_{2}\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]$
\therefore Rate of disappearance of NO_{2}
i.e., $-\frac{\mathrm{d}\left[\mathrm{NO}_{2}\right]}{\mathrm{dt}}=2 \mathrm{k}_{1}\left[\mathrm{NO}_{2}\right]^{2}-2 \mathrm{k}_{2}\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]$
90. (4) Statement I is true as more number of carbonyl group, more will be the acidic strength. This is because the carbonyl carbon is electron withdrawing group. In both aldehydes and ketones, C -atom is double bonded with oxygen atom.
91. (4) turns acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ paper green
92. (4) NO_{3}^{-}is reduced in preference to $\mathrm{H}_{3} \mathrm{O}^{+}$.
93. (3) The complete sequence of reaction is as follows

94. (3) In $\mathrm{PF}_{5}, \mathrm{SF}_{6}$ and $\mathrm{H}_{2} \mathrm{SO}_{4}$, the central atom has more than eigth valence electrons hence they exhibit expanded octet. This is possible due to availability of 3d-orbitals. Elements in and beyond the third period of the periodic table do not follow octet rule thus it applies mainly to the second period elements of the peridic table.
95. (1) At equilibrium $\underset{(\mathrm{n}-0.5 \mathrm{n})}{\mathrm{N}_{2}(\mathrm{~g})}+\underset{(3 \mathrm{n}-1.5 \mathrm{n})}{3 \mathrm{H}_{2}(\mathrm{~g})} \rightleftharpoons \underset{\mathrm{n}}{\rightleftharpoons} \underset{\mathrm{n}}{2} \mathrm{NH}_{3}(\mathrm{~g})$

Total no. of moles $=n-0.5 n+3 n-1.5 n+n=3 n$
$x_{N_{2}}=\frac{0.5 n}{3 n}=\frac{1}{6}, x_{H_{2}}=\frac{1.5 n}{3 n}=\frac{1}{2}, x N H_{3}=\frac{n}{3 n}=\frac{1}{3}$
$K_{p}=\frac{\left(p \mathrm{NH}_{3}\right)^{2}}{\left(p N_{2}\right)\left(p H_{2}\right)^{3}}=\frac{\left(\frac{1}{3} \cdot P\right)^{2}}{\left(\frac{1}{6} P\right) \cdot\left(\frac{1}{2} P\right)^{3}}$
$=\frac{1}{9} \times 6 \times 8 P^{-2}=\frac{16}{3 P^{2}}$
96. (2) The correct match is A-(iv), B-(ii), C-(iii), D-(i).
A. The reaction of aliphatic primary amines with a
mixture of sodium nitrite and HCl forms aliphatic alcohols and nitrogen.
$\mathrm{R}^{\prime} \mathrm{NH}_{2} \xrightarrow{\mathrm{NaNO}_{2}+\mathrm{HCl}} \mathrm{R}^{\prime} \mathrm{OH}+\mathrm{N}_{2}$
B. The reaction of aniline (aromatic primary amine) with a mixture of sodium nirite and HCl forms benzene diazonium chloride. This reaction is called diazotisation.
$\mathrm{PhNH}_{2} \xrightarrow{\mathrm{NaNO}_{2}+\mathrm{HCl}} \mathrm{Ph}-\mathrm{N}^{+} \equiv \mathrm{NCl}^{-}$
C. $\left.\mathrm{PhNH}_{2} \xrightarrow[2) \mathrm{H}_{2} \mathrm{O} / \Delta\right]{\text { 1) } \mathrm{NaNO}_{2}+\mathrm{HCl}} \mathrm{PhOH}$
D. $\mathrm{PhNH}_{2} \xrightarrow[\text { 2) } \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}]{\text { 1 } \mathrm{NaN}_{2}+\mathrm{HCl}} \mathrm{C}_{6} \mathrm{H}_{6}$
97. (2) The correct match is. A-I, B-IV, C-II, D-III
98. (2) Weight of benzoic acid $=1.89 \mathrm{~g}$;

Temperature of bomb calorimeter $=25^{\circ} \mathrm{C}=298 \mathrm{~K}$;
Mass of water $(\mathrm{m})=18.94 \mathrm{~kg}=18940 \mathrm{~g}$;
Increase in temperature $(\Delta \mathrm{T})=0.632^{\circ} \mathrm{C}$ and specific heat of water $(\mathrm{s})=0.998 \mathrm{cal} / \mathrm{g}-\mathrm{deg}$.

Heat gained by water or heat liberated by benzoic $\operatorname{acid}(\mathrm{Q})=\mathrm{ms} \Delta \mathrm{T}=18940 \times 0.998 \times 0.632$ $=11946.14 \mathrm{cal}$.

Since 1.89 g of acid liberates 11946.14 cal of heat, therefore heat liberated by 122 g of acid $=\frac{\mathrm{E} 11946.14 \times 122}{1.89}$
$=771,126.5 \mathrm{cal}=771.126 \mathrm{kcal}$
(where, 122 g is the molecular weight of benzoic acid)
99. (3) Finkelstein reaction is a nucleophilic substitution reaction

Hydration of alkene involves act of adding electrophilic hydrogen on nucleophilic alkenes. So, it is a electrophilic addition reaction.

Nitration of benzene involves substitution of H^{+}from benzene by a nitro group (electrophile). So, it is a electrophilic substitution reaction.

Reaction of alkene with NBS involves formation of free radical Br from NBS reagent and hydrogen atom at allylic position will get substitution by bromine radical. So, it is a type of free radical substitution reaction.

Hence, the correct match is
A-(ii), B-(i), C-(iv), D-(iii).
100. (2) Mass of solution $=100 \times 1.08=108 \mathrm{~g}$

Mass of HCl present in solution

$$
=\frac{108 \times 20}{100}=\frac{108}{5} g
$$

Number of moles $=\frac{108}{5} \times \frac{1}{36.5}=0.6$
(Molecular weight of $\mathrm{HCl}=36.5$)

BOTANY

Section - A (35 Ouestions)

101. (3) (NCERT $11^{\text {th }}$ para 8.5.3.3/ Page no. 134)
102. (3) (NCERT 11 th , Page no- 22, $1^{\text {st }}$ paragraph, Line no- 8,9)
103. (2) (NCERT $11^{\text {th }}$ para 10.2 .5 concept based $/$ Page no.166)
104. (1) (NCERT $11^{\text {th }}$ page no. $212-13.6 .1$ concept based)
105. (3) (NCERT 12 ${ }^{\text {th }}:$ Page no36, Last paragraph, Line no- 36-39)
106. (2) (NCERT $11^{\text {th }}$ Page no. 30,3.1, last line)
107. (2) (NCERT $11^{\text {th }}$, Page no- $26,1^{\text {st }}$ paragraph, Line no- $9,10,11$)
108. (4) (NCERT $11^{\text {th }}$, Page no- $10,3^{\text {rd }}$ paragraph, Line no- concept based)
109. (1) (NCERT $11^{\text {th }}$ para 10.1.1 concept based / Page no. 164)
110. (3) (NCERT $11^{\text {th }}$,Page no. 31 fig. 3.1 conceptual, table 3.1)
111. (3) (NCERT $\left.11^{\text {th }} \mathrm{Pg} .229,14.1\right)$
112. (3) (NCERT $\left.11^{\text {th }} \mathrm{Pg} .234,14.5\right)$
113. (1) (NCERT $11^{\text {th }}$ page no. $211-1^{\text {st }}$ paragraph)
114. (3) [NCERT 11 ${ }^{\text {th }}$, Page no. 90, First paragraph, Point no. 6.2.3]
115. (1) [NCERT $11^{\text {th }}$, Page 242, Figure 15.4]
116. (2) (NCERT 11 ${ }^{\text {th }}$, Page No. 79, Fig. 5.21)
117. (4) (NCERT XII, Pg 74, Para 5, Line 7)
118. (3) (NCERT $12^{\text {th }} \mathrm{Pg} 75$, Para 1, $1^{\text {st }}$ line, para 2, $1^{\text {st }}$ line, Para 3, $3^{\text {rd }}$ line; Pg. 76, Para 1, Line $3{ }^{\text {rd }}$
119. (3) (NCERT 12 ${ }^{\text {th }}, \operatorname{Pg} 80$, Para 1, Based on $2^{\text {nd }}$ line)
120. (4) (NCERT $11^{\text {th }}$ para 8.5.3.2, Figure 8.6/ Page no. 134)
121. (4) [NCERT 11 ${ }^{\text {th }}$, Page no. 86, Line no. 0809]
122. (2) (NCERT 12 ${ }^{\text {th }}$, Page no- 27, Last paragraph, Line no- 37,38)
(NCERT 12 ${ }^{\text {th }}$ Page no-28, $1^{\text {st }}$ paragraph, Line no- 12, 13, 14)
123. (2) (NCERT $12^{\text {th }}$, Page no- $23,2^{\text {nd }}$ paragraph, line no-4,5)
124. (1) (NCERT 11 ${ }^{\text {th }}$, Page no- $24,2^{\text {nd }}$ paragraph, Line no- 16, 17, 18 19)
125. (4) (NCERT $\left.11^{\text {th }} \mathrm{Pg} .229,14.1\right)$
126. (2) (NCERT 12 ${ }^{\text {th }}, \operatorname{Pg} 120$, Para last, Last two lines)
127. (4) (NCERT 12 ${ }^{\text {th }}, \operatorname{Pg} 109$, Sub point 6.5 .3 , Line 6)
128. (1) (NCERT 12 ${ }^{\text {th }}, \operatorname{Pg} 109$, Sub point 6.5.3, Line 4)
129. (3) (NCERT $12{ }^{\text {th }}$ Page no. $243,33^{\text {rd }}$ para last line.)
130. (4) (NCERT $11^{\text {th }}$, Page No. 72, sub-topic 5.4 and 5.5)
131. (2) (NCERT 12 ${ }^{\text {th }}, \operatorname{Pg} 78$, Para 3, Line 4)
132. (3) (NCERT 12 ${ }^{\text {th }}, \operatorname{Pg} 89$, Para 2)
133. (4) (NCERT 12 ${ }^{\text {th }}, \operatorname{Pg} 114$, Para 2)
134. (3) (NCERT 12 th, Pg 115, Para last)
135. (1) (NCERT 12 th, Pg 117, Para 2, Line 1)

SECTION - B (Attempt Any 10 Questions)

136. (4) [NCERT 11 ${ }^{\text {th }}$, Page 249, Point 15.4.3.2]
137. (2) [NCERT 11 ${ }^{\text {th }}$, Page 241, Point 15.1.3 (First paragraph)]
138. (3) (NCERT 11 ${ }^{\text {th }}$ Page No. 70, 74 and 75)
139. (3) (NCERT 11 th PK, Page no.31(fig.3.1) and,3.1.2 Page no.33, lst line)
140. (4) (NCERT $11^{\text {th }}$, Page no- $20,1^{\text {st }}$ paragraph, Line no- 5 and 6)
141. (2) (NCERT 11 ${ }^{\text {th }}$, Page no- 11, Table- 1.1)
142. (2) (NCERT 11 th page no. 212 -13.6.1 concept based)
143. (4) (NCERT 12 ${ }^{\text {th }}$ Page no $21,1^{\text {st }}$ Paragraph, Line no- 22-24)
144. (2) (NCERT $11^{\text {th }}$ para 8.5.3.2,/ Page no. 133)
145. (3) (NCERT 12 ${ }^{\text {th }}$, Pg 73, Para 2, Line 23)
146. (3) (NCERT $11^{\text {th }} \mathrm{PK}$, Gymnosperm concept based.)
147. (3) (NCERT 11 ${ }^{\text {th }}$, Page No. 71, sub-topic 5.3.4)
148. (4) (NCERT $11^{\text {th }}$ para8.5.1 / Page no. 132)
149. (2) (NCERT 11 ${ }^{\text {th }}$ para10.4.1 / Page no.168,169)
150. (1) (NCERT $12^{\text {th }}$ page no. $2431^{\text {st }}$ para, Secondary productivity is productivity produced by consumers or heterotrophs, not available for consumption.)

ZOOLOGY

Section - A (35 Questions)

151. (2) (NCERT $11^{\text {th }}$ Page No. 195)
152. (3) (NCERT $11^{\text {th }}$ Page No. 199)
153. (1) (NCERT 12 ${ }^{\text {th }} ;$ Page. No. 130)
154. (2) (NCERT 12 ${ }^{\text {th }}$; Page. No. 144)
155. (3) (NCERT $11^{\text {th }}$ Page No. 298, 4th line of 4th paragraph)
156. (4) (NCERT $12^{\text {th }}$ page no. 267 , $1^{\text {st }}$ line $)$
157. (1) (NCERT $12^{\text {th }}$, Page no- $140,3^{\text {rd }}$ paragraph, Line no- 20,21)
158. (1) (NCERT 11 ${ }^{\text {th }}$, Page no- 159, Pareagraph9.12.6)
159. (3) (NCERT 12 ${ }^{\text {th }}$, Page no-136, Figure-7.8)
160. (2) (NCERT 12 ${ }^{\text {th }}$ para 10.2.2/ Page no. 182)
161. (3) (NCERT 12 ${ }^{\text {th }}$, Page no. $232,1^{\text {st }}$ para)
162. (4) [NCERT $12^{\text {th }}$ P.No.211, $1^{\text {st }}$ para]
163. (2) [NCERT $12{ }^{\text {th }}$ P.No.201, $2^{\text {nd }}$ Para]
164. (1) [NCERT $12{ }^{\text {th }}$ P.No.211, $1^{\text {st }}$ para]
165. (3) (NCERT $11^{\text {th }}$ Page No. 56 Class chondrichthyes)
166. (1) (NCERT $11^{\text {th }}$ Page No. 52; 1th line of Annelida)
167. (3) (NCERT $11^{\text {th }}$ Page No. 294; 1st line of 5th paragraph)
168. (1) [NCERT $11^{\text {th }}$ P.No.311,Pectoral Girdle]
169. (2) [NCERT $11^{\text {th }}$ P.No.307, $6^{\text {th }}$ Line]
170. (4) [NCERT 11 ${ }^{\text {th }}$ P.No.306, Fig 20.3]
171. (2) (NCERT $11^{\text {th }}$, page no-147, $1^{\text {st }}$ paragraph, last line)
172. (3) (NCERT $12^{\text {th }}$, Page no-131, $1^{\text {st }}$ paragraph, line no- 6,7)
173. (2) (NCERT $12^{\text {th }}$ page no 43 , last para)
174. (3) (NCERT $12^{\text {th }}$ p.no 45 , para1)
175. (3) (NCERT $12^{\text {th }}$ p.no 54, para2)
176. (3) (NCERT $12^{\text {th }}$ p.no 64, para2)
177. (4) [NCERT $11^{\text {th }}$ P.No.311, $3^{\text {rd }}$ Para]
178. (4) [NCERT $11^{\text {th }}$ P.No. 321 , last Para, $1^{\text {st }}$ line]
179. (2) (NCERT $11^{\text {th }}$ page no 111 , FIG 7.14)
180. (3) (NCERT $11^{\text {th }}$ page no 103 , fig no 7.4)
181. (2) (NCERT $11^{\text {th }}$ p.no119, para1)
182. (1) (NCERT $11^{\text {th }}$ Page No. 339, 5th line of 4th paragraph)
183. (4) (NCERT 12 ${ }^{\text {th }}$ Page no.233, (i), $2^{\text {nd }}$ para)
184. (4) (NCERT $11^{\text {th }}$ Page No. 190)
185. (1) (NCERT 12 ${ }^{\text {th }}$; Page No. 130-133)

SECTION - B (Attempt Any 10 Questions)

186. (4) (NCERT 11 ${ }^{\text {th }}$, Page n0-147, Table 9.5)
187. (3) (NCERT $12^{\text {th }}$ p.no 60 , last para)
188. (4)(NCERT $11^{\text {th }}$ NCERT conceptual)
189. (4) [NCERT 11 ${ }^{\text {th }}$ P.No.320, $3^{\text {rd }}$ para]
190. (2) (NCERT 12 ${ }^{\text {th }}$ para 10.2.2/ Page no. 182)
191. (2) [NCERT 12 ${ }^{\text {th }}$ P.No.197, Para just above Fig 11.2]
192. (3) [NCERT $11^{\text {th }}$ P.No.304,Last para, 307 First para last 4 Lines and Last para]
193. (3) (NCERT 12th; Page. No. 130)
194. (4) (NCERT XI; Page No. 51; 3rd line of phylum ctenophora)
195. (1) (NCERT 11th; Page No. 199)
196. (4) (NCERT $12{ }^{\text {th }}$ Page no. 261 last para, please note: mammals more than amphibians)
197. (2) (NCERT 11th; Page No. 186)
198. (4) (NCERT 12 ${ }^{\text {th }}$, p.no. 47 , para3)
199. (2) (NCERT 12 ${ }^{\text {th }}$ para 10.2.3 / Page no. 183)
200. (3) (NCERT 12 ${ }^{\text {th }}$, Page no-128, Figure-7.1)
