P ANSWER KEY \& SOLUTION KEY FINAL ROUND - 18 (PCB) Dt.28.04.2024

Section - A (Physics)

1. (2) $\mathrm{v}=36 \mathrm{~km} / \mathrm{hr}=10 \mathrm{~m} / \mathrm{s}$.

Applying conservation of momentum, we get;
$2 \times 10=(2+3) \mathrm{V}$ or $\mathrm{V}=4 \mathrm{~m} / \mathrm{s}$
Loss in K.E. $=\frac{1}{2} \times 2 \times(10)^{2}-\frac{1}{2} \times 5 \times(4)^{2}$

$$
=100-40=60 \mathrm{~J} .
$$

2. (4) $K \propto T$
3. (4) $f=\frac{R}{2} \Rightarrow R=40 \mathrm{~cm}$.
4. (2) $\alpha t^{2}=1 \Rightarrow \alpha=\frac{1}{t^{2}}=\left[T^{-2}\right]$.
5. (4) As electric field is conservative field so work done along close path is zero.
6. (4) Since initial and final states are same, hence ΔU is same in all process. Area under the curve is maximum in A and minimum in C. Hence, work done will be minimum in C and Q will be maximum in A .
7. (1) In a progressive wave, at a point, particle performs oscillatory motion.
8. (2) As
$T=2 \pi \sqrt{\frac{l_{\text {eff }}}{g}}$, So as girl stand up $l_{\text {eff }} \downarrow \Rightarrow T \downarrow$.
9. (1) $E=\frac{V}{l}=\frac{10}{10}=1 \mathrm{~V} / \mathrm{m}$.
10. (4) Velocity after the collision
$=\frac{10 \times 10+5 \times 0}{15}=\frac{100}{15}=\frac{20}{3} \mathrm{~m} / \mathrm{s}$.
11. (3) The direction of oscillations of E and B fields are perpendicular to each other as well as to the direction of propagation. So, electromagnetic waves are transverse in nature.
12. (2) If the earth shrinks suddenly, its radius R would decrease and $I=\frac{2}{5} M R^{2}$ would decrease. Thus, ω increase to keep angular momentum constant.
Hence the length of the day will decrease.
In a uniform gravitational field COM and COG coincides.
13. (3) Since Range on horizontal plane is
$R=\frac{u^{2} \sin 2 \theta}{g}$
So it is max when $\sin 2 \theta=1 \Rightarrow \theta=\frac{\pi}{4}$.
14. (1) K.E. $=h v-h v_{0}=e V_{0}\left(V_{0}=\right.$ cut off voltage $)$
$\Rightarrow V_{0}=\frac{h}{e}\left(8.2 \times 10^{14}-3.3 \times 10^{14}\right)$

$$
=\frac{6.6 \times 10^{-34} \times 4.9 \times 10^{14}}{1.6 \times 10^{-19}} \approx 2 V \text {. }
$$

15. (3) Given, ${ }_{L}: V_{C}: V_{R}: 1: 1: 2: 3$
$V=100 \mathrm{~V}, V_{R}=$?
As we know, $V=\sqrt{V_{R}^{2}+\left(V_{L}-V_{C}\right)^{2}}$
$(100)^{2}=(3 x)^{2}+(2 x-x)^{2} \Rightarrow x=10 \sqrt{10}$
So $V_{R}=3 x=30 \sqrt{10} \approx 90 \mathrm{~V}$.
16. (3)

Using, $V=f \lambda$
$\frac{V_{1}}{\lambda_{1}}=\frac{V_{2}}{\lambda_{2}} \Rightarrow \lambda_{2}=\frac{V_{2}}{V_{1}} \lambda_{1}$

So, $\lambda_{2}=\sqrt{\frac{T_{2}}{T_{1}}} \lambda_{1} \Rightarrow \lambda_{2}=\sqrt{\frac{8 g}{2 g}} 6=12 \mathrm{~cm}$.
17. (2) Here $u=56 \mathrm{~m} / \mathrm{s}$

Let θ the angle of projection with the horizontal to have maximumrange, with maximum height $=40 \mathrm{~m}$

Maximum height, $H=\frac{u^{2} \sin ^{2} \theta}{2 g}$
$40=\frac{(56)^{2} \sin ^{2} \theta}{2 \times 9.8}$
$\Rightarrow \sin ^{2} \theta=\frac{2 \times 9.8 \times 40}{(56)^{2}}=\frac{1}{4}$
$\Rightarrow \sin \theta=\frac{1}{2} \quad \Rightarrow \theta=\sin ^{-1} \frac{1}{2}=30^{\circ}$.
18. (2) For path overtone, $n=\frac{(p+1)}{2 l} \sqrt{\frac{T}{\pi r^{2} \rho}}$.
19. (4) In isobaric expansion, work done is maximum.
20. (4) $E=\frac{50}{100} \mathrm{IAt}=\frac{1}{2} \times 20 \times 20 \times 60=12 \times 10^{3} \mathrm{~J}$.
21. (4) $A=60^{\circ}$ (for equilateral prism)
$i=i^{\prime}=\frac{3}{4} \times 60=45^{\circ}$
So $\delta=i+i^{\prime}-A=45^{\circ}+45^{\circ}-60=30^{\circ}$.
22. (1) $Y=\frac{F / A}{\Delta l / l} \Rightarrow \therefore \Delta l=\frac{F l}{A Y}$

Substituting the values
$\Delta l=\frac{\left(1.5 \times 10^{4}\right)(1.0)}{\left(1.5 \times 10^{-4}\right)\left(2.0 \times 10^{11}\right)}=0.5 \times 10^{-3} \mathrm{~m}$.
or $\Delta l=0.5 \mathrm{~mm}$.
23. (3) $\rightarrow f$ remains same
$I \propto d^{2}$
New intensity of image
$I^{\prime}=I-\frac{I}{4}=\frac{3 I}{4}$.
24. (2) Pentavalent is called donor.
25. (2) When $h=\frac{H}{2}$, Range is maximum.
26. (3) For photo electric emission incident light energy
$E=\frac{h c}{2 \lambda} \geq \frac{h c}{\lambda_{0}}$
$\Rightarrow \frac{1}{2 \lambda} \geq \frac{1}{\lambda_{0}}$
$\Rightarrow 2 \lambda \leq \lambda_{0}$
$\Rightarrow \lambda \leq \frac{\lambda_{0}}{2}$
Where $\lambda_{0}=$ threshold wavelength.
27. (2) The electric field inside the emptied space is non-zero and uniform.
28. (2) Conceptual.
29. (4) Just after closing switch Current through inductor is zero. Because of its property.
30. (3) $n=\frac{V}{2\left(l_{2}-l_{1}\right)}=\frac{340}{2(0.84-0.50)}=500 \mathrm{~Hz}$.
31. (1) If incident light is white light, then central fringe is white while all other fringes are coloured
32. (4) Diffraction effect can be observed in both sound as well as light waves.
33. (1) $f=\frac{100}{16}=6.25 \mathrm{~cm}$.

For maximum magnification final image should be at $\mathrm{D}=25 \mathrm{~cm}$.

So $\frac{1}{f}=\frac{1}{V}-\frac{1}{u} \Rightarrow \frac{1}{6.25}=\frac{-1}{25}-\frac{1}{u} \Rightarrow u=-5 \mathrm{~cm}$.
34. (1) We know that $\frac{W_{A B}}{q}=V_{B}-V_{A}$
$\therefore V_{B}-V_{A}=\frac{2 \mathrm{~J}}{20 \mathrm{C}}=0.1 \mathrm{~J} / \mathrm{C}=0.1 \mathrm{~V}$.
35. (1) Latent heat of fusion $=80 \mathrm{cal} / \mathrm{gm}$

Latent heat of vaporisation $=540 \mathrm{cal} / \mathrm{gm}$.

Section - B (Physics)

36. (2) Without loss in generally consider

$F_{1}=\frac{K 2 \mu C \times 4 \mu C}{r^{2}}$

$F_{2}=\frac{K 3 \mu C \times 3 \mu C}{(1)^{2}}$
$F_{2} \propto 9, \quad F_{1} \propto 8$
$\therefore F_{2}>F_{1}$.
37. (3) Time to complete $1 / 4^{\text {th }}$ oscillation is $\frac{T}{4}$ s. Time to complete $1 / 8^{\text {th }}$ vibration from extreme position is obtained from
$y=\frac{a}{2}=a \cos \frac{2 \pi}{T} t$ or $t=\frac{T}{6} \mathrm{~s}$
So time to complete $3 / 8^{\text {th }}$ oscillation $=\frac{T}{4}+\frac{T}{6}=\frac{5 T}{12}$.
38. (4) Work done by magnetic force is zero. Because it always acts perpendicular to velocity.
39.

(2) $\frac{1}{R_{P}}=\frac{1}{R_{1}}+\frac{1}{R_{2}}\left(\because R=\frac{\rho L}{A}=\frac{L}{\sigma A}\right)$
$\frac{\sigma 2 A}{L}=\frac{\sigma_{1} A}{L}+\frac{\sigma_{2} A}{L}$
Effective specific conductance, $\sigma=\frac{\sigma_{1}+\sigma_{2}}{2}$.
40. (1) The resistance connected to voltmeter in series to increase its range from 5 V to 30 V is, $R=\left(\frac{V_{2}-V_{1}}{V_{1}}\right) G_{V}$.

Here G_{V} is the resistance of voltmeter
$\Rightarrow R=\left(\frac{30-5}{5}\right) \times 200=1000 \Omega=1 \mathrm{k} \Omega$.
41. (2) Given, $V=2 \sqrt{x}$.

We know that $\frac{d X}{d t}=V$
$\therefore \frac{d X}{d t}=2 \sqrt{X} \Rightarrow \int_{0}^{t} 2 d t=\int_{0}^{x} \frac{d x}{\sqrt{x}}$
$\left.\frac{X^{\frac{1}{2}+1}}{-\frac{1}{2}+1}\right|_{0} ^{X}=2 t \Rightarrow 2(\sqrt{X}-0)=2 t$
$\sqrt{X}=t \Rightarrow X=t^{2}$
$\mathrm{v}=\frac{d X}{d t}=\frac{d}{d t} t^{2}$
$\therefore \mathrm{v}=2 t$.
42. (2) $g \frac{1}{4} \times 20=m g \times 30$

43. (2) $\alpha=\frac{\tau_{0}}{I_{0}}$
$\frac{m g L / 2}{m L^{2} / 3}=\frac{3 g}{2 L}$.

44. (4) For straight path $q E=q v B \Rightarrow \mathrm{v}=\frac{E}{B}$
$R=\frac{m}{q B}\left(\frac{E}{B}\right) \Rightarrow m=q \frac{B^{2} R}{E}$.
45. (1) $Y=A+B \Rightarrow O R$ gate
$Y=\bar{A}+\bar{B}=\overline{A B} \Rightarrow$ NAND gate
$Y=\overline{\bar{A}+\bar{B}}=\overline{\overline{A B}}=A B \Rightarrow$ AND gate
$Y=\overline{A+B} \Rightarrow$ NOR gate.
46. (2) Let the temperature of the star be T. Then
$\frac{d Q}{d t}=e A \sigma T^{4}\{e=1\}$
$Q=\left(4 \pi R^{2}\right) \sigma T^{4}$
$T=\left(\frac{Q}{4 \pi R^{2} \sigma}\right)^{1 / 4}$.
47. (3) Fringe width $\beta=\frac{D \lambda}{d}$

Given, $d=0.4 \mathrm{~mm}=0.04 \mathrm{~cm}, D=200 \mathrm{~cm}$ $\beta=2 \mathrm{~mm}=0.2 \mathrm{~cm}$
$\therefore 0.2=\frac{200 \times \lambda}{0.04} \Rightarrow \lambda=400 \mathrm{~nm}$.
48. (4) $\omega_{A / B}=\frac{3 \pi}{2} \mathrm{rad} / \mathrm{s}$
$\Delta \theta=2 \pi-\frac{\pi}{3} \Rightarrow \Delta \theta=\frac{5 \pi}{3}$
Then time $=\frac{\Delta \theta}{\omega_{A / B}}=\frac{5 \pi / 3}{3 \pi / 2}=\frac{10}{9} s$.
49. (4) $W=K_{f}-K_{i}$
$W=\frac{1}{2} m \mathrm{v}^{2}=\frac{1}{2} m a^{2} t^{2}$ where $a=\frac{v}{t_{1}}$
50. (1) (a) Heat current $H=\frac{\Delta \theta}{R} \Rightarrow \frac{H_{P}}{H_{S}}=\frac{R_{S}}{R_{P}}$

In first case :
$R_{S}=R_{1}+R_{2}=\frac{1}{(3 K) A}+\frac{1}{K A}=\frac{4}{3} \frac{l}{K A}$
In second case :
$R_{P}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}=\frac{\frac{1}{(3 K) A} \times \frac{1}{K A}}{\frac{1}{(3 K) A}+\frac{1}{K A}}=\frac{l}{4 K A}$
$\therefore \frac{H_{P}}{H_{S}}=\frac{4 l / 3 K A}{l / 4 K A}=\frac{16}{3}$.

Section - A (Chemistry)

51. (3) Valency of metal $=+2$

Hence, formula of metal chloride will be MCl_{2}.
52.
(1) $\overline{\mathrm{v}}_{\text {max }}=\frac{1}{\lambda_{\text {min }}}=\mathrm{R}_{\mathrm{H}} \mathrm{Z}^{2}\left[\frac{1}{\mathrm{n}_{1}^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right]$
for $Z=1, n_{1}=1, n_{2}=\infty, \frac{1}{\mathrm{X}}=\mathrm{R}_{\mathrm{H}}$
$\bar{v}=\frac{1}{\lambda_{\text {max }}}=R_{H} Z^{2}\left[\frac{1}{2^{2}}-\frac{1}{3^{2}}\right]=\frac{1 \times 4}{\mathrm{x}}\left[\frac{5}{36}\right]$
$\lambda_{\text {max }}=\frac{9 \mathrm{x}}{5}$.
53. (4) EWG increases acidic strength
54. (3) DIBAL - H reduces - CN group into aldehyde group.
55. (1) In general, electron affinity decreases down the group but electron affinity for chlorine is more than fluorine, and similarly electron affinity for sulphur is more than oxygen, because in F and O , due to small size of the atom, the electrons are already crowded. Entry of one more electron results in more repulsions, which leads to absorption of some energy, so the energy released is less than the expected.
56. (1) $1 \mathrm{~s}^{2}, 2 \mathrm{~s}^{2}, 2 \mathrm{p}^{6}, 3 \mathrm{~s}^{2}$ - in third transition, electron is to be removed from stable configuration.
57. (2) Evaporation of water is an endothermic process.
58. (4) $\mathrm{XeF}_{6(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightleftharpoons \mathrm{XeOF}_{4(\mathrm{~g})}+2 \mathrm{HF}_{(\mathrm{g})}$
$\mathrm{XeO}_{4(\mathrm{~g})}+\mathrm{XeF}_{6(\mathrm{~g})} \rightleftharpoons \mathrm{XeOF}_{4(\mathrm{~g})}+\mathrm{XeO}_{3} \mathrm{~F}_{2(\mathrm{~g})}$
by reversing the equation (i) and adding (ii)
$\mathrm{XeO}_{4(\mathrm{~g})}+2 \mathrm{HF}_{(\mathrm{g})} \rightleftharpoons \mathrm{XeO}_{3} \mathrm{~F}_{2(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
Thus, $\mathrm{K}=\frac{1}{\mathrm{~K}_{1}} \times \mathrm{K}_{2}=\frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}$.
59. (4) Resonance energy
60. (4) Steam distillation
61. (1) In corresponding compound NH_{3}, bond angle $=107^{\circ}$ whereas in PH_{3}, bond angle $\approx 90^{\circ}$. This is due to the reason that for the same surrounding atom as the electronegativity of central atom decreases and also decrease in the bond pairbond pair repulsion, bond angle decrease in the bond pair-bond pair repulsion, bond angle decreases.
62. (3) Bond strength depends on the extent of overlapping. Maximum overlapping is observed in the case of p-orbitals.
63. (2) Atequilibrium, rate of forward reaction is equal to rate of backward reaction.
64. (1) Oxidation is a process in which hydrogen is removed or oxygen is added or loss of electron takes place or oxidation number increases.
65. (4) SN^{1} mechanism
66. (1) AgCN - dominant covalent character
67. (2) Orthoboric acid is weak monobasic acid with $\mathrm{K}_{\mathrm{a}}=1.0 \times 10^{-9}$. It does not act as protonic acid (i.e., proton donor) but behaves as Lewis acid by accepting a pair of electrons from OH^{-}ion.
$\mathrm{B}(\mathrm{OH})_{3}+2 \mathrm{H}-\mathrm{O}-\mathrm{H} \rightarrow\left[\mathrm{B}(\mathrm{OH})_{4}\right]^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$
68. (3) Since bond energy for Cl_{2} is maximum, it must have the strongest bond. F-F bond is weaker than
$\mathrm{Cl}-\mathrm{Cl}$ bond because of interelectronic repulsions takeing place in small sized fluorine.
69. (4) $\stackrel{\mathrm{x}}{\mathrm{N}_{3}+1} \mathrm{H}$ i.e., $3(\mathrm{x})+1(+1)=0 \Rightarrow=-\frac{1}{3}$.
70. (3) The salt bridge possesses the electrolyte having nearly same ionic mobilities of its cation and anion.
71. (4) $4>2>1>3$ Reactivity \propto EDG
72. (3) Nucleophile always attack on electron deficient site. Presence of electron withdrawing groups such as $\mathrm{NO}_{2}, \mathrm{CHO}$ etc., decreases the electron density on benzene nucleus, hence such groups activate the ring towards nucleophilic attack.
While presence of electron releasing groups such as-R or-OR increases the electron density, thsu deactivates the benzene nucleus toward nucleophilic attack.
Hence, NO_{2} group activates the ring more thanCl towards nucleophilic attack.

73. (2)

$\mathrm{Six} \mathrm{Cr}-\mathrm{O}$ bonds have some partial double bond character while two $\mathrm{Cr}-\mathrm{O}$ bonds are purely single bond.
74. (3) Oxidation state of Cr in $\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{6}\right] \mathrm{Cl}_{3}=+3$

EAN $=$ Electrons on $\mathrm{Cr}^{3+}+$ Electrons from 6 $\mathrm{NH}_{3}=21+12=33$
75. (4) Unit of rate constant $=\left(\frac{\text { litre }}{\mathrm{mol}}\right)^{\mathrm{n}-1} \mathrm{~s}^{-1}$

If $\mathrm{n}=3$, then the unit of rate constant is $\mathrm{mol}^{-2} \mathrm{~L}^{2} \mathrm{~s}^{-1}$.

Therefore, the order of reaction is three.
76. (4) Both Statement I and Statement II are true.
77. (1) Aldehyde having no α-hydrogen undergoes Cannizzaro reaction in presence of base

78. (3) Hyperconjugation occurs through the H -atoms present on the carbon atom next to the double bond/radical/cargonium ion, i.e. α-hydrogen atoms. There is no $\alpha-H$ in the structures I and II. So, hyperconjugation occurs in only III structure, i.e.

79. (2) Geometrical isomerism is shown by square planar and octahedral complexes.
80. (2)
$\mathrm{K}_{2} \mathrm{Fe}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$-white $]$
81. (3) Among the given statement, C and D are incorrect whereas A, B are correct. The correct form of C and D are:

- If the electronic structure of oxygen atom is
 Hund's rule.
- The increasing order of energy of subshells for multielectron atom is $6 \mathrm{~s}, 4 \mathrm{f}, 5 \mathrm{~d}, 6 \mathrm{p}$.

82. (2) The correct match is

A-IV, B-I, C-II, D-III
83. (4) The two most common pyrimidines of DNA are cytosine (C) and thymine (T) and the two most common purines of DNA are adenine (A) and guanine (G).
84. (1) Neutral FeCl_{3} test
85. (1) $\Delta \mathrm{x} \times \Delta \mathrm{p}=\frac{\mathrm{h}}{4 \pi}$ (Heisenberg's uncertainty principle)
$\Rightarrow \Delta \mathrm{x}=\frac{6.62 \times 10^{-34}}{4 \times 3.14 \times 10^{-5}}=5.27 \times 10^{-30} \mathrm{~m}$

Section - B (Chemistry)

86. (2) As coal has 80% carbon in weight weight of carbon in $10 \quad \mathrm{~kg}$ coal $=10 \times \frac{80}{100}=8 \mathrm{~kg}=8000 \mathrm{~g}$

As 60% of C is converted to CO_{2} thus wt. of C converted into $\mathrm{CO}_{2}=8000 \times \frac{60}{100}=4800 \mathrm{~g}$ and 40% of C to CO thus wt. of C converted into $C O=8000 \times \frac{40}{100}=3200 \mathrm{~g}$.
$12 \mathrm{~g}(1 \mathrm{~mole})$ of C on combustion liberates $=$ 394 kJ of heat
$\therefore 4800 \mathrm{~g}$ of C on combustion liberates

$$
\begin{equation*}
=\frac{394 \times 4800}{12} \mathrm{~kJ}=157600 \mathrm{~kJ} . \tag{i}
\end{equation*}
$$

$12 \mathrm{~g}(1 \mathrm{~mole})$ of C on combustion liberates $=$ 111 kJ heat
$\therefore 3200 \mathrm{~g}$ of C on combustion liberates

$$
\begin{aligned}
& =\frac{111 \times 3200}{12} \mathrm{~kJ} \\
& =29600 \mathrm{~kJ}
\end{aligned}
$$

Total heat liberates would be

$$
=157600+29600=187200 \mathrm{~kJ}
$$

87. (1)

88. (3) $\mathrm{SN}^{1} \propto$ stability of carbocation
89. (1) The correct match is A-III, B-IV, C-II, D-I
90. (3) A is false but R is true
91. (3) $\rho=1.25 \mathrm{~g} \mathrm{~mL}^{-1}, \mathrm{M}_{\mathrm{NaNO}_{3}}=85 \mathrm{~g} \mathrm{~mol}^{-1}$,

Molarity $=1 \mathrm{M} \quad \frac{1}{m}=\frac{\rho}{\mathrm{M}}-\frac{\mathrm{M}_{\mathrm{NaNO}_{3}}}{1000}$
$\Rightarrow \frac{1}{\mathrm{~m}}=\frac{1.25}{1}-\frac{85}{1000}=1.25-0.085=1.165$
$\mathrm{m}=0.858$.
92. (1) Suppose weight of $\mathrm{N}_{2} \mathrm{O}_{4}=x$ g

Suppose weight of $\mathrm{NO}_{2}=100-\mathrm{xg}$
Total no. of moles $=\frac{x}{92}+\frac{100-x}{46}$
But molecular mass of the mixture $=2 \times 38.3=$ 76.6
\Rightarrow Total no. of moles in the mixture $=\frac{100}{76.6}=1.3$
$\Rightarrow 1.3=\frac{\mathrm{x}}{92}+\frac{100-\mathrm{x}}{46} \Rightarrow \mathrm{x}=80$ and $100-\mathrm{x}=20$
\Rightarrow No. of moles $\left(\mathrm{NO}_{2}\right)=\frac{20}{46}=0.434$
93. (2) (A)-(IV), (B)-(II), (C)-(I), (D)-(III)
94. (4) ' A ' is $\mathrm{CH}_{3}-\mathrm{C} \equiv \mathrm{C}-\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~B}$ is

95. (4) $\mathrm{Green}^{\mathrm{Cr}}\left(\mathrm{SO}_{4}\right)_{3}$ is formed
96. (4) Among the given statements, only C, D and E are correct while the statements A and B are incorrect.
Their correct form is:

- The complex $\left[\mathrm{Ni}\left(\mathrm{Cl}_{4}\right)\right]^{2-}$ is an outer orbital complex.
- The complex $\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{4}$ is an inner orbital complex.

97. (3) Mercurous chloride, $\mathrm{Hg}_{2} \mathrm{Cl}_{2}$ is used in calomel electrode.
98. (1) $\mathrm{C}=\frac{\mathrm{n}}{\mathrm{V}}=\frac{\mathrm{P}}{\mathrm{RT}} \quad \therefore \frac{\mathrm{dC}}{\mathrm{dt}}=\frac{1}{\mathrm{~V}}\left(\frac{\mathrm{dn}}{\mathrm{dt}}\right)=\frac{1}{\mathrm{RT}}\left(\frac{\mathrm{dP}}{\mathrm{dt}}\right)$
99. (3) Among the given compounds only I and II will give a yellow precipitate with iodine and alkali.

2-hydroxypropane $\binom{\mathrm{CH}_{3} \mathrm{CH}-\mathrm{CH}_{3}}{\mathrm{OH}}$ contains the $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH})$ and $\mathrm{CH}_{3} \mathrm{CO}-$ is present in acetophenone $\left(\begin{array}{c}\stackrel{\mathrm{O}}{\mathrm{C}_{6} \mathrm{H}_{5}-\stackrel{I}{\mathrm{C}}} \mathrm{CH}_{3}\end{array}\right)$ so, both of these compounds will gives, iodoform test, i.e. form iodoform on reaction with I_{2} and alkali.
100. (2) The correct order of stability of given cations is
$\mathrm{R}>\mathrm{P}>\mathrm{Q}>\mathrm{S}$

Section - A (Biology : Botany)

101. (4) (NCERT $11^{\text {th }}$ page no 35 to 36 , conceptual)
102. (3) [NCERT $11^{\text {th }}$ Newly added family]
103. (4) (NCERT $11^{\text {th }} \mathrm{Pg} .232,1{ }^{\text {st }}$ Para, $14^{\text {th }}$ line)
104. (1) (NCERT $11^{\text {th }}$ para $8.510 /$ Page no.139)
105. (4) [NCERT 11 ${ }^{\text {th }}$ Page No. 68; Sub-topic 5.2.1]
106. (4) [NCERT $11^{\text {th }}$ Page no. 88, First paragraph]
107. (1) (NCERT 12 ${ }^{\text {th }}, \operatorname{Pg} 111$, based on Permutation combination (Last $4^{\text {th }}$ line))
108. (3) (NCERT $12^{\text {th }}$ page no 29, Last paragraph, Line no 38-40)
109. (2) (NCERT $11^{\text {th }}$ page no 20 , line no-12-14)
110. (4) (NCERT $11^{\text {th }}$, Page no-24, Paragraph2.3.3, Line no-12,13)
111. (3) (NCERT 12 ${ }^{\text {th }}, 110$, Figure 6.11)
112. (3) (NCERT 12 ${ }^{\text {th }}, \operatorname{Pg} 97$, based on Chargaff's rule)
113. (4) [NCERT $11^{\text {th }}$ Page 249 , point 15.4.3.3]
114. (1) (NCERT $11^{\text {th }}$ Page no. 32 to 33 , conceptual.)
115. (3) (NCERT $12^{\text {th }}$ Page no. $2453^{\text {rd }}$ para $1^{\text {st }}$ line,concept.)
116. (4) (NCERT $11^{\text {th }}$ para 8.4/ Page no. 127)
117. (3) [NCERT $11^{\text {th }}$, Page 247, Point 15.4.2]
118. (3) (NCERT $11^{\text {th }} \mathrm{Pg} .233$, Figure 14.4)
119. (2) (NCERT 12 ${ }^{\text {th }}, \operatorname{Pg} 80$, based on Law of Independent Assortment)
120. (3) (NCERT $12^{\text {th }}, \operatorname{Pg} 111$, para 2 , line 4 based)
121. (1) (NCERT 12 ${ }^{\text {th }}, \operatorname{Pg} 91$, Thalassemia)
122. (4) (NCERT $12{ }^{\text {th }}$, Pg. 114, TRANSLATION$2^{\text {nd }}$ line)
123. (1) (NCERT $12{ }^{\text {th }}$ Page no 22, $1^{\text {st }}$ paragraph, Conceptual)
124. (2) (NCERT 11 ${ }^{\text {th }}$-page no. 211 - 13.5 Line 12 to 14 - concept based)
125. (2) (NCERT 12 ${ }^{\text {th }}, \operatorname{Pg} 73$, Figure 5.4 based on monohybrid cross)
126. (1) (NCERT 11 ${ }^{\text {th }}$, Page no- 20, Paragraph2.2.1, Line no-1-10)
127. (2) (NCERT $11^{\text {th }}$ Page no- 8, $2^{\text {nd }}$ paragraph, Line 3 and 4)
128. (1) (NCERT 11 ${ }^{\text {th }}$ para 10.2.5 / Page no. 166)
129. (3) (NCERT 12 ${ }^{\text {th }}, \operatorname{Pg} 80$, Para 1)
130. (3) (NCERT 12 ${ }^{\text {th }}$, Mixed concept of cell div, Genetics, and Oogenesis)
131. (4) (NCERT 12 ${ }^{\text {th }}, \operatorname{Pg} 112$, Point (ii))
132. (3) [NCERT $11^{\text {th }}$ Newly added family]
133. (4) (NCERT $11^{\text {th }}$ page no. 213, point (a), page no. 214 - point (b) and (c) 13.6 -concept based)
134. (3) (NCERT $11^{\text {th }}$ para $8.510 /$ Page no.139)
135. (2) (NCERT 11 ${ }^{\text {th }}$ para 8.5.4 / Page no.134)

Section - B (Biology : Botany)

136. (4) [NCERT 11 ${ }^{\text {th }}$, Page no. 88, Point 6.2.1 (Line no.- 01-06)]
137. (4) [NCERT 11 ${ }^{\text {th }}$, Page 248, Second paragraph]
138. (3) (NCERT $\left.11^{\text {th }} \mathrm{Pg} .229,14.1\right)$
139. (4) (NCERT $11^{\text {th }}$, page no. 29 , conceptual)
140. (3) (NCERT $11^{\text {th }}$ Page no. $303.1,2^{\text {nd }}$ and $3^{\text {rd }}$ para)
141. (4) (NCERT 12 ${ }^{\text {th }}$ Page no. 249 fig.14.4(d) concept based)
142. (4) (NCERT $11^{\text {th }}$ para 10.1 .1 conceptual based / Page no. 164)
143. (4) (NCERT $12^{\text {th }}$ Page no- 23, $2^{\text {nd }}$ Paragraph, Line no- 20 and 21)
144. (2) (NCERT $11^{\text {th }}$ para 10.4.1/ Page no. 168)
145. (3) [NCERT $11^{\text {th }}$ Page No. 80; Sub-topic 5.9.2]
146. (1) (NCERT $11^{\text {th }}$, Page no- $19,1^{\text {st }}$ paragraph, Line no-1-7)
147. (3) (NCERT $12^{\text {th }}, \operatorname{Pg} 74$, Based on test cross)
148. (4) (NCERT 12 ${ }^{\text {th }}$ no-29, $1^{\text {st }}$ paragraph, Last line)
149. (2) (NCERT $11^{\text {th }}$ page no. 222 - fig. 13.10 concept based)
150. (4) (NCERT $11^{\text {th }}$ Page no- $7,2^{\text {nd }}$ pargraph, Line no- 34 and 35)

Section - A (Biology : Zoology)

151. (3) (NCERT 11 ${ }^{\text {th }}$, Page no- 149, Paragraph9.6, Line no-10-14)
152. (2) (NCERT 12 ${ }^{\text {th }}$ Page no- $127,2^{\text {nd }}$ paragraph, line no- 18,19)
153. (4) (NCERT $11^{\text {th }}$ Page No - 194 formed elements)
154. (3) (NCERT $12^{\text {th }}$ Page No -159 Cannabinoids)
155. (2) (NCERT $12^{\text {th }}$ Page No -161 Addiction \& dependence)
156. (3) (NCERT $11^{\text {th }}$ page 114, para2)
157. (1) (NCERT 12 ${ }^{\text {th }}$ page $62,4.3$ MTP)
158. (4) (NCERT $11^{\text {th }}$, Page no-143, Table- 9.1)
159. (1) (NCERT $12^{\text {th }}$ page no- $127,1^{\text {st }}$ paragraph, line no-12)
160. (1) (NCERT 11 ${ }^{\text {th }}$, Page No. 337, Glucorticoids)
161. (4) (NCERT $11^{\text {th }}$; Page No. 335, 2nd paragraph)
162. (2) [NCERT $11^{\text {th }} \mathrm{p} 310 ; 1^{\text {st }}$ Line]
163. (3) (NCERT $12^{\text {th }}$ page 50 , menstrual cycle)
164. (2) (NCERT 12 $2^{\text {th }}$ page 60 , para 1)
165. (3) (NCERT 11 th ; Page No. 294; 6th line of 3rd paragraph)
166. (3) [NCERT 11 ${ }^{\text {th }}$ P.No.306, $1^{\text {st }}$ para]
167. (2) [NCERT $11^{\text {th }}$ P.No.320, Meninges Of Brain]
168. (4) (NCERT $12{ }^{\text {th }}$ Page No -151 fig. 8.4)
169. (1) [NCERT $11^{\text {th }}$ P.No.303, Last 2 Para]
170. (3) (NCERT 11 ${ }^{\text {th }}$ page 114, para 3)
171. (2) (NCERT 11 ${ }^{\text {th }}$ page no 113, para 1)
172. (1) (NCERT $11^{\text {th }}$ page no 113, para 1)
173. (2) (NCERT 11 ${ }^{\text {th }}$ Page No -190 Regulation of respiration)
174. (2) [NCERT 11 ${ }^{\text {th }}$ P.No.321, Forebrain , Midbrain And Hind brain Mixed]
175. (1) (NCERT 12 ${ }^{\text {th }}$ Page No - 159 Cocaine)
176. (1) (NCERT 11 th Page No. 53; phylum mollusca)
177. (2) (NCERT 11 ${ }^{\text {th }}$ Page No. 52; 10th line of phylum annelida)
178. (3) [NCERT 12 ${ }^{\text {th }}$ P.No.211, Last para]
179. (4) [NCERT 12 ${ }^{\text {th }}$ P.No.195, Restriction Enzymes $1^{\text {st }}$ para]
180. (2) [NCERT 12 ${ }^{\text {th }}$ P.No.204, Fig 11.7]
181. (3) (NCERT 11 ${ }^{\text {th }}$ Page No - 189 Transport of O_{2})
182. (2) (NCERT 12 ${ }^{\text {th }}$, Evolution, Whole chapter knowledge based)
183. (2) (NCERT $12^{\text {th }}$ para 10.1 / Page no. 181)
184. (4) (NCERT 12 ${ }^{\text {th }}$, Page no. 266 to 267)
185. (4) (NCERT 12 ${ }^{\text {th }}$ Page no. 268 last $2^{\text {nd }}$ para, summary)

Section - B (Biology : Zoology)

186. (1) (NCERT 11 ${ }^{\text {th }}$, Page no- 148, Paragraph9.5, Line no-11-14)
187. (2) [NCERT 12 ${ }^{\text {th }}$ P.No.193, Last para]
188. (2) (NCERT 11 ${ }^{\text {th }}$ Page No. 56; Classchondrichthyes)
189. (4) (NCERT 11 ${ }^{\text {th }}$, Page no- 159, Paragraph9.12.6, Line no-9-11)
190. (3) (NCERT $12^{\text {th }}$ page no. 231 (ii), $1^{\text {st }}$ Para)
191. (4) [NCERT $11^{\text {th }}$ P.No.319, $2^{\text {nd }}$ para Applied]
192. (4) [NCERT 11 ${ }^{\text {th }}$ P.No.309, 310,311]
193. (2) (NCERT 12 ${ }^{\text {th }}$ Page no- 135, Paragraph7.6, line no- 33 and 34)
194. (4) (NCERT $12^{\text {th }}$ para 10 introduction / Page no. 180)
195. (2) (NCERT $12^{\text {th }}$, Page no. 230 to 231)
196. (2) (NCERT $11^{\text {th }}$ Mixed question of excretory and chemical Page No. 294 and 337)
197. (3) (NCERT $12^{\text {th }}$, Page No - 196 Coagulation of blood)
198. (3) (NCERT $12^{\text {th }}$, Page No. 132)
199. (4) (NCERT $12^{\text {th }}$, p.no. 56)
200. (3) (NCERT $12^{\text {th }}$, page 58,61 para 3)
