B\%i NEET- 2024

ANSWER KEY \& SOLUTION KEY FINAL ROUND - 17 (PCB) Dt.27.04.2024

PHYSICS

SECTION - A (35 Questions)

1. (1) Current flowing through the conductor.

$$
\frac{4}{1}=\frac{n e v_{d_{1}} \pi(1)^{2}}{n e v_{d_{2}} \pi(2)^{2}} \text { or } \frac{v_{d_{1}}}{v_{d_{2}}}=\frac{4 \times 4}{1}=\frac{16}{1}
$$

2. (1) According to Stefan's law
$E=\sigma T^{4}$
Heat radiated per unit area in 1 hour (3600s) is
$=5 \times 10^{-8} \times(3000)^{4} \times 3600=1.5 \times 10^{10}$]
3. (4) Total charge $Q_{1}+Q_{2}=Q_{1}^{\prime}+Q_{2}^{\prime}$

$$
=12 \mu \mathrm{C}-3 \mu \mathrm{C}=9 \mu \mathrm{C}
$$

Two isolated conducting spheres S_{1} and S_{2} are two connected by a conducting wire.
$\therefore V_{1}=V_{2}=\frac{K Q_{1}^{\prime}}{2 / 3 R}=\frac{K Q_{2}^{\prime}}{R / 3}=12-3=9 \mu C$
$Q_{1}^{\prime}=2 Q_{2}^{\prime} \Rightarrow 2 Q_{2}^{\prime}+Q_{2}^{\prime}=9 \mu C$
$\therefore Q_{1}^{\prime}=6 \mu C$ and $Q_{2}^{\prime}=3 \mu C$
04. (1) When hot water temperature (T) and surrounding temperature $\left(T_{0}\right)$ readings are noted, and log ($T-T_{0}$) is plotted versus time, we get a straight line having a negative slope; as a proof of newton's law of cooling.
$\frac{d T}{d t}=-K \Delta T$
$\int_{\Delta T_{\text {initial }}}^{\Delta T_{\text {final }}} \frac{d T}{\Delta T}=-K \int_{0}^{t} d t \Rightarrow \ln \left[\frac{T-T_{0}}{T_{i}-T_{0}}\right]=-K t$
$\Rightarrow \ln \left(T-T_{0}\right)=\ln \left(T_{i}-T_{0}\right)-k t$
So on comparing $y=-m x+c$
So option (1) is correct.
05. (1) Mass of section $\mathrm{BC} m / L(\mathrm{~L}-y)$.
\therefore tension at $\mathrm{B}=\mathrm{T}=\mathrm{m} / \mathrm{L}(\mathrm{L}-y) \mathrm{g}$.
\therefore elongation of element dy at B
$=d x=(d y) \frac{T}{A Y}=\frac{m}{L}(L-y) g \frac{d y}{A Y}$
Total elongation $=$
$\int d x=\frac{m g}{L A Y} \int_{0}^{L}(L-Y) d y=\frac{m g L}{2 Y A}$

06. (3) $\vec{M}($ mag \times moment $/$ volume $)=\frac{N i A}{A \ell}$
$=\frac{N i}{\ell}=\frac{(500) 15}{25 \times 10^{-2}}=30000 \mathrm{Am}^{-1}$
07. (2) Majority carries in an n-type semiconductor are electrons.
08. (4) $F+f=m a$
$F R-f R=\frac{m R^{2}}{2} \frac{a}{R}$
From equation (i) and (ii)
$2 F=\frac{3 m a}{2}$ or $a=\frac{4 F}{3 m}$
$F+f=\frac{m 4 F}{3 m}$
$F=\frac{4}{3} F-F=\frac{F}{3}$
09. (4) Translational $\mathrm{KE}=\frac{1}{2} m v^{2}$

Rotational $\mathrm{KE}=$
$\frac{1}{2} I \omega^{2}=\frac{1}{2} m R^{2} \omega^{2}\left(\because\right.$ For a ring, $\left.\mathrm{I}=\mathrm{mR}^{2}\right)$
$\therefore K_{R}=\frac{1}{2} m(\omega R)^{2}=\frac{1}{2} m v^{2}$
So translational $\mathrm{KE}=$ rotational KE
$\therefore \frac{K_{T}}{K_{R}}=1: 1$
10. (4) $\mathrm{n}=\mathrm{n}$ to $\mathrm{n}=1$, number of transition $=$ $\frac{n(n-1)}{2}=10$
$n^{2}-n=20$
$n=5$
11. (2)

12. (1)

The voltage drop across $1 \mathrm{k} \Omega=\mathrm{V}_{\mathrm{Z}}=15 \mathrm{~V}$ The current through $1 \mathrm{k} \Omega$ is :
$I^{\prime}=\frac{15 \mathrm{~V}}{1 \times 10^{3} \Omega}=15 \times 10^{-3} \mathrm{~A}=15 \mathrm{~mA}$
The voltage drop across $250 \Omega=20 \mathrm{~V}-15 \mathrm{~V}=$ 5 V
The current through 250Ω is
$I=\frac{5 \mathrm{~V}}{250 \Omega}=0.02 \mathrm{~A}=20 \mathrm{~mA}$
The current through the Zener diode is :
$I_{Z}=I-I^{\prime}=(20-15) m A=5 \mathrm{~mA}$
13. (1) Let pressure outside be P_{0}
$\therefore P_{1}($ in smaller bubble $)=\mathrm{P}_{0}+\frac{2 T}{r}$
$P_{2}($ in bigger bubble $)=\mathrm{P}_{0}+\frac{2 T}{R}(R>r)$
$\therefore P_{1}>P_{2}$
Hence air moves from smaller bubble to bigger bubble.
14. (1) $G=15 \Omega, i_{g}=4 m A, i=6 \mathrm{~A}$

Required shunt,
$S=\left(\frac{i_{g}}{i-i_{g}}\right) G=\left(\frac{4 \times 10^{-3}}{6-4 \times 10^{-3}}\right) \times 15$
$\frac{4 \times 10^{-3}}{5.996} \times 15=10 \mathrm{~m} \Omega$ (in parallel)
15. (1) Kirchoff's loop rule follows from conservation of energy.
16. (1) $\frac{\Delta A}{A}=2 \frac{\Delta r}{r}\left[\mathrm{As} \mathrm{A}=4 \pi r^{2}\right]$
$\frac{\Delta V}{V}=3 \frac{\Delta r}{r}$
$\therefore \frac{\Delta V}{V}=\frac{3}{2} \frac{\Delta A}{A} \Rightarrow \frac{\Delta V}{V}=\frac{3}{2} \alpha$
17. (3) $\phi=a t+b, \phi+\Delta \phi=a(t+\Delta t)+b$. Subtraction gives $\Delta \phi=a \Delta t$
Average induced emf $=(\Delta \phi / \Delta t)=a$. The average induced current is a / R
18. (4) $n_{1} \beta_{1}=n_{2} \beta_{2}$
$n_{1}\left(\frac{D \lambda_{1}}{d}\right)=n_{2}\left(\frac{D \lambda_{2}}{d}\right)$
$n_{2}=n_{1}\left(\frac{\lambda_{1}}{\lambda_{2}}\right) \Rightarrow 62 \times \frac{5893}{4358} \approx 84$
19. (3) $(\mathrm{KE})_{\max }=\mathrm{E}-\phi$
$=1.8-1.2$
$=0.6 \mathrm{eV}$
i.e., $\mathrm{eV}_{0}=(\mathrm{KE})_{\max } \quad=\mathrm{eV}_{0}=0.6 \mathrm{eV}$
\therefore Stopping potential $\mathrm{V}_{0}=0.6 \mathrm{~V}$
20. (1) A is false and B is true
21. (1) Conceptual
22. (2) By Gauss Law, flux is only by inside charges.
23. (1) Ideal ammeter has zero resistance
24. (4) $\mathrm{U}=\mathrm{U}_{1}+\mathrm{U}_{2}$
$=n_{1} C_{v 1} T+n_{2} C_{v 2} T$
$=3 \times \frac{5}{2} R T+5 \times \frac{3}{2} R \times T$
$=15 R T$
25. (4) Diffraction effect can be observed in both sound as well as light waves
26. (3) Magnitude of average velocity is
$\left|\vec{v}_{a v}\right|=\left|\frac{\text { displacement }}{\text { time }}\right|$
$=\frac{P Q}{t}=\frac{\sqrt{2} R}{t}$

Here t can be found from
$\theta=\frac{1}{2} \alpha t^{2}$ or $t=\sqrt{\frac{2 \theta}{\alpha}}$, where $\theta=\frac{\pi}{2}$
$=\sqrt{\frac{2 \times \frac{\pi}{2}}{\pi / 4}}=2 s$
$\left|\vec{v}_{a v}\right|=\frac{\sqrt{2} R}{t}=\frac{\sqrt{2} \cdot \sqrt{2}}{2}=1 \mathrm{~m} / \mathrm{s}$
27. (2) $E=R h e\left[\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right]$

E will be maximum for the transition for which
$\left[\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right]$ is
Maximum. Here n_{2} is the higher energy level.
Clearly, $\left[\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right]$ is maximum for the third transition,
i.e. $2 \rightarrow 1$. I transition represents the absorption of energy.
28. (2) Induced electric field is non conservative in nature and of circular in shape.
29. (3) $\frac{d}{d v}\left(V P^{n}\right)=0$
$v n P^{n-1} \frac{d P}{d v}+P^{n}=0$
$n v P^{n-1} \frac{d P}{d v}=-P^{n} \frac{d p}{d v}=\frac{-p^{n}}{n V p^{n-1}}=\frac{-p}{n V}$
Bulk modulus $=\frac{d p}{-d V / V}=-V \frac{d P}{d v}=\frac{P}{n}$
30. (3) Volume of first substance, $\mathrm{V}_{1}=1 / 2$

Volume of second substance, $V_{2}=4 / 3$
\therefore Relative density $=\frac{1+4}{(1 / 2)+(4 / 3)}=\frac{30}{11}=2.73$
31. (3) $B_{1}=\frac{\mu_{0} I}{2 R}, B_{2}=\frac{2 \mu_{0} I}{2 R}$
$B_{R}=\sqrt{B_{1}^{2}+B_{2}^{2}}=\frac{\mu_{0}}{2 R} \sqrt{I^{2}+(2 I)^{2}}$
$\frac{\mu_{0}}{2 R} \times \sqrt{5} I=\frac{\sqrt{5} \mu_{0} I}{2 R}$
32. (1) Given, $\vec{v}=(3 \hat{i}+5 \hat{j}) \mathrm{m} / \mathrm{s}$
$\vec{B}=(6 \hat{i}+4 \hat{j}) T$
Magnetic force, $\vec{F}=q(\vec{v} \times \vec{B})$
$=-e[(3 \hat{i}+5 \hat{j}) \times(6 \hat{i}+4 \hat{j})]$
$=-e[(-30 \hat{k}+12 \hat{k})]=18 e \hat{k} N$
Thus, force is along positive Z -axis.
33. (1) We know in case of parallel plates the charges distributed as shown in the figure.

34. (4) According to Faraday's law of electro-magnetic induction Induced emf, $e=\frac{L d i}{d t}$
$50=L\left(\frac{5-2}{0.1 \mathrm{sec}}\right)$
$\Rightarrow L=\frac{50 \times 0.1}{3}=\frac{5}{3}=1.67 \mathrm{H}$
35. (3) Work function of aluminium is 4.2 eV . The energy of two photons can not be added at the moment photons collide with electron all its energy will be dissipated or wasted as this energy is not sufficient to knock it out. Hence emission of electron is not possible.

SECTION - B (Attempt Any 10 Questions)

36. (1) Given $\mathrm{T} / 2=0.5 \mathrm{~s}$
$\therefore \mathrm{T}=1 \mathrm{~s}$
Frequency, $f=\frac{1}{T}=\frac{1}{1}=1 \mathrm{~Hz}$
If A is the amplitude, then
$2 \mathrm{~A}=50 \mathrm{~cm} \Rightarrow \mathrm{~A}=25 \mathrm{~cm}$
37. (3) Both statement I and II are correct
38.

(2) $\frac{S_{4 t h}}{S_{3 r d}}=\frac{u+\frac{1}{2} g\left(2 t_{1}-1\right)}{u+\frac{1}{2} g\left(2 t_{2}-1\right)}$
$=\frac{20+\frac{1}{2} \times 10(2 \times 4-1)}{20+\frac{1}{2} \times 10(2 \times 3-1)}$
$=\frac{20+5(7)}{20+5(5)}=\frac{20+35}{20+25}=\frac{55}{45} \Rightarrow \frac{S_{3 r d}}{S_{2 n d}}=\frac{11}{9}$
(1) $\frac{G m M}{R^{n}}=\frac{m v^{2}}{R} \Rightarrow \sqrt{\frac{M}{R^{n-1}}}=V$
$T=\frac{2 \pi R}{v}=\frac{2 \pi R}{\sqrt{G M}} R^{\left(\frac{n-1}{2}\right)} \Rightarrow T \propto R^{\frac{n+1}{2}}$
40. (4) For 16 g of helium, $n_{1}=\frac{16}{4}=4$

For 16 g of oxygen, $n_{2}=\frac{16}{32}=\frac{1}{2}$
For mixture of gases,
$C_{V}=\frac{n_{1} C_{v_{1}}+n_{2} C_{V_{2}}}{n_{1}+n_{2}} \quad$ where $C_{V}=\frac{f}{2} R$
$C_{P}=\frac{n_{1} C_{P_{1}}+n_{2} C_{P_{2}}}{n_{1}+n_{2}}$ where $C_{P}=\left(\frac{f}{2}+1\right) R$
For helium, $f=3, n_{1}=4$
For oxygen, $f=5, n_{2}=1 / 2$
$\therefore \frac{C_{P}}{C_{V}}=\frac{\left(4 \times \frac{5}{2} R\right)+\left(\frac{1}{2} \times \frac{7}{2} R\right)}{\left(4 \times \frac{3}{2} R\right)+\left(\frac{1}{2} \times \frac{5}{2} R\right)}=\frac{47}{29}=1.62$
41. (2)

We know that $y=x \tan \theta\left(1-\frac{x}{R}\right)$
Now, from figure
$\tan \alpha+\tan \beta=\frac{x \tan \theta\left(1-\frac{x}{R}\right)}{x}+\frac{x \tan \theta\left(1-\frac{x}{R}\right)}{(R-x)}$

On solving $\tan \alpha+\tan \beta=\tan \theta$
42. (1) Conceptual
43.
(3) $i=\frac{\varepsilon}{r+R}$
$v=i R=\frac{\varepsilon R}{r+R} \Rightarrow v=\frac{\varepsilon}{1+\frac{r}{R}}$
here, $r=$ constant

44. (2) Heat given by water,
$Q_{1}=m s \Delta T=200 \times 1 \times(25-10)=3000 \mathrm{cal}$
Heat absorbed by m gm of ice $\mathrm{at}-14^{\circ} \mathrm{C}$ to convert into water at $10^{\circ} \mathrm{C}$ is :
$Q_{2}=(m s \Delta T)_{\text {ice }}+m L_{\text {ice }}+(m s \Delta T)_{\text {water }}$
$=m(0.5 \times 14+80+1 \times 10]=97 m$
Hence, $97 m=3000$ or $m=31 \mathrm{gm}$.
45. (1) $d \sin \theta=n \lambda$
for 3 rd maxima $n=3$
$\therefore \sin \theta=\frac{n \lambda}{d}=\frac{3 \times 589 \times 10^{-9}}{0.589}$
or $\theta=\sin ^{-1}\left(3 \times 10^{-6}\right)$
46.
(1) $\frac{A_{1}}{A_{2}}=\frac{\sqrt{\beta}}{1}$,
$\frac{a_{\text {max }}}{a_{\text {min }}}=\frac{A_{1}+A_{2}}{A_{1}-A_{2}}$
47. (1) When interfering sources have same frequency and their phase difference remains constant with time, interference is sustained (stayed for a finite time interval)
If amplitudes are of nearby values then contrast will be more pronounced.
48.
(3) $Z=\sqrt{R^{2}+\left(2 \pi f L-\frac{1}{2 \pi f C}\right)^{2}}$

From above equation at $f=0 \Rightarrow z=\infty$
When $f=\frac{1}{2 \pi \sqrt{L C}}$ (resonate frequency)
$\Rightarrow Z=R$
For $f>\frac{1}{2 \pi \sqrt{L C}} \Rightarrow Z$ starts increasing.
i.e., for frequency $0-f_{r} Z$ decreases
and for f_{r} to ∞, Z increases. This is justified by graph (3)
49. (4)

Force of friction will balance the weight.

So $\mu \mathrm{M} a \geq \mathrm{Mg} ; \mu=\frac{g}{a}$

50. (1) The equivalent circuit is shown in figure

Thus, $\mathrm{C}_{a b}=C=\frac{\varepsilon_{0} A}{d}$

CHEMISTRY

SECTION - A (35 Questions)

51. (2) The ligands with small value of Δ_{0} are called weak field ligands whereas those with large value of Δ_{0} are called strong field ligands, hence CN^{-} causes more splitting than $\mathrm{H}_{2} \mathrm{O}$ and NH_{3}.
52. (1) In $\mathrm{F}_{2} \mathrm{O}$, fluorine is more electronegative than oxygen and hence given oxidation number of -1 .
53. (1) Conceptual
54. (4) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}, \mathrm{KMnO}_{4}$ and $\mathrm{K}_{2} \mathrm{CrO}_{4}$ are coloured due to charge transfer.
55. (1) $\mathrm{MnO}_{4}^{-}+8 \mathrm{H}^{+}+5 \mathrm{e}^{-} \rightarrow \mathrm{Mn}^{2+}+4 \mathrm{H}_{2} \mathrm{O}$
$\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right) \rightarrow \mathrm{Fe}^{2+}+\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$
$\mathrm{Fe}^{2+} \rightarrow \mathrm{Fe}^{3+}+\mathrm{e}^{-}, \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{e}^{-}$
We can see that one mole of KMnO_{4} accepts 5 electrons, whereas one mole of $\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)$ loses 3 electrons.
\therefore Number of moles of KMnO_{4} required to oxidise one mole of $\mathrm{Fe}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)=3 / 5=0.6$ mole.
56. (1) Conceptual
57. (1) Lanthanoids are 14 elements in the VIth period (atomic number $=58$ to 71) that are filling the $4 \mathrm{f}-$ sublevel.
58. (1) Molality, $\mathrm{m}=\frac{\mathrm{w}_{\mathrm{B}}}{\mathrm{m}_{\mathrm{B}}} \times \frac{1000}{\mathrm{w}_{\mathrm{A}}}$
$\mathrm{b}=\frac{\mathrm{c}}{\mathrm{m}_{\mathrm{B}}} \times \frac{1000}{(\mathrm{a}-\mathrm{c})} ; \mathrm{m}_{\mathrm{B}}=\frac{\mathrm{c}}{\mathrm{b}} \times \frac{1000}{(\mathrm{a}-\mathrm{c})}$
59. (4) Rate of Reaction α stability of carbocation.
60. (2) Assertion is true but Reason is false. The correct form of Reason is :
In NH_{3}, bond angle reduces to 107.5° due to repulsion between lone pair on N and bond pairs between N and H .
61. (3) The given figure is showing positive deviation from Raoult's law.
$\mathrm{P}_{\mathrm{A}}>\mathrm{P}_{\mathrm{A}}^{0} \mathrm{X}_{\mathrm{A}}$
Thus A-B attractive force should be weaker than $\mathrm{A}-\mathrm{A}$ and $\mathrm{B}-\mathrm{B}$ attractive forces.
62. (2) $\mathrm{CH}_{3} \mathrm{CHO}+\mathrm{RMgX}^{\mathrm{H}_{2} \mathrm{O}} \mathrm{CH}_{3}-\mathrm{CH}(\mathrm{OH})-\mathrm{R}$
63. (4) Acetate
64. (3) The overall reaction of Daniell cell is
$\mathrm{Zn}(\mathrm{s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \longrightarrow \mathrm{Cu}(\mathrm{s})+\mathrm{Zn}^{2+}(\mathrm{aq})$
So, its cell representation will be as follows :
$Z n(s)\left|Z n^{2+}(a q) \| C u^{2+}(a q)\right| C u(s)$
65. (3) Conceptual
66. (2) Mechanism of reaction as well as relative concentration of reactants decides that how many concentration terms affect the rate of reaction i.e., order of reaction.
67. (2) O_{2}^{2-}
68. (1) Catalyst catalyse both forward and backward reaction by same extent, without changing $\Delta \mathrm{G}$ and K_{c}.
69. (2) ' A ' is $\mathrm{CH} \equiv \mathrm{CH}$; ' B ' is $\mathrm{CH}_{3} \mathrm{CHO}$; ' C ' is
$\mathrm{CH}_{3}-\mathrm{CH}_{3}$; ' D ' is $\mathrm{CH}_{3} \mathrm{COOH}$
$\mathrm{CH} \equiv \mathrm{CH} \xrightarrow[\mathrm{Ni} / 150-300^{\circ}]{\mathrm{H}_{2}} \mathrm{CH}_{3}-\mathrm{CH}_{3}$
$\mathrm{CH}_{3}-\mathrm{CHO} \xrightarrow[\mathrm{H}^{+}]{\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right) \mathrm{T}^{+}\right.} \mathrm{CH}_{3} \mathrm{COOH}$
70. (4) Both Assertion and Reason are true and Reason is the correct explanation of Assertion
NaCl dissociates in water and organic acids dimerises in benzene.
71. (2) $\mathrm{A}=\mathrm{B}=$ pricric acid
72. (1) Hydrated size of ion \propto Charge density of ion $\rightarrow \mathrm{H}^{+}$
73. (3) (I)-(C), (II)-(D), (III)-(A), (IV)-(B)
74. (1) 4
75. (2)

$\mathrm{F}^{1}-\mathrm{S}-\mathrm{F}^{3}$
$\mathrm{F}^{2}-\mathrm{S}-\mathrm{F}^{4}$,
$\mathrm{F}^{5}-\mathrm{S}-\mathrm{F}^{6}, \quad \mathrm{Each}=180^{\circ}$.
76. (2) No. of atoms $=N_{A} \times$ No. of moles $\times 3$ (atomicity) $=6.023 \times 10^{23} \times 0.1 \times 3=1.806 \times 10^{23}$
77. (4) It is valid for single electron species only
78. (3)

4-Bromo-6-hydroxycyclohex-2-ene-1-carboxylic acid
79. (2) $\mathrm{H}_{2} \stackrel{1}{\mathrm{C}}=\stackrel{2}{\mathrm{C}}=\stackrel{3}{\mathrm{C}} \mathrm{H}-\stackrel{4}{\mathrm{C}} \mathrm{H}_{3}$
80. (2) XeOF_{4}
81. (3)
 three -OH groups are present.
82. (1) $\Delta E=0$ for isothermal process.
83. (2) $2 \mathrm{XY} \rightleftharpoons \mathrm{X}_{2}+\mathrm{Y}_{2} ; \mathrm{K}_{\mathrm{c}}=81$
$\mathrm{XY} \rightleftharpoons \frac{1}{2} \mathrm{X}_{2}+\frac{1}{2} \mathrm{Y}_{2} ; \mathrm{K}_{\mathrm{c}}^{\prime}=$?
$\mathrm{K}_{\mathrm{c}}^{\prime}=\sqrt{K_{c}}=\sqrt{81}=9$
84. (2) In nitrobenzene $-\mathrm{NO}_{2}$ is strong electron with drawing group decreases the reactivity
85. (2) each double bonded Carbon must be connected to two different group

SECTION - B (Attempt Any 10 Questions)

86. (3)
Cycloheptanoic acid
87. (4)

Complex ion	Hybridization of central atom
$\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$	$\mathrm{d}^{2} \mathrm{sp}^{3}$ (inner)
$\left[\mathrm{Mn}(\mathrm{CN})_{6}\right]^{4-}$	$\mathrm{d}^{2} \mathrm{sp}^{3}$ (inner)
$\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)\right]^{3+}$	$\mathrm{d}^{2} \mathrm{sp}^{3}$ (inner)
$\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right]^{2+}$	$\mathrm{sp}^{3} \mathrm{~d}^{2}$ (outer)

88. (1)

Total moles at equilibrium
$=\mathrm{a}-\mathrm{x}+\mathrm{b}-3 \mathrm{x}+2 \mathrm{x}=\mathrm{a}+\mathrm{b}-2 \mathrm{x}$
$\mathrm{p}_{\mathrm{N}_{2}}=$ Moles fraction of $\mathrm{N}_{2} \times \mathrm{P}=\left(\frac{a-x}{a+b-2 x}\right) P$
$\mathrm{p}_{\mathrm{H}_{2}}=\left(\frac{b-3 x}{a+b-2 x}\right) P ; p_{\mathrm{NH}_{3}}=\left(\frac{2 x}{a+b-2 x}\right) P$
$K_{p}=\frac{p_{N H_{3}}^{2}}{p_{N_{2}} \times p_{H_{2}}^{3}}=\frac{\left(\frac{2 x}{a+b-2 x}\right)^{2} p^{2}}{\left(\frac{a-x}{a+b-2 x} P\right)\left(\frac{b-3 x}{a+b-2 x}\right)^{3} P^{3}}$
$=\frac{4 x^{2}(a+b-2 x)^{2}}{(a-x)(b-3 x)^{3} P^{2}}$
89. (2) (I) Ketones do not give positive Tollen's and Fehling's test.
(II) Aromatic aldehydes do not give positive Fehling's test
(III) HCHO does not give positive haloform test
90. (1) Energy of photon, $E=h v=\frac{h c}{\lambda}$
$=\frac{\left(6.6 \times 10^{-23} \mathrm{~J} \mathrm{~s}\right)\left(3 \times 10^{8} \mathrm{~ms}^{-1}\right)}{5000 \times 10^{-10} \mathrm{~m}}=3.96 \times 10^{-19} \mathrm{~J}$
$=\frac{3.96 \times 10^{-19} \mathrm{~J}}{1.6 \times 10^{-19} \mathrm{~J} / \mathrm{eV}}=2.475 \mathrm{eV}$
$\left(\therefore 1 \mathrm{ev}=1.6 \times 10^{-19} \mathrm{~J}\right)$
Kinetic energy of the emitted photon $=h v-h v_{0}$
$=2.475-2.20=0.275 \mathrm{eV}$
$=0.275 \times 1.6 \times 10^{-19} \mathrm{~J}=4.4 \times 10^{-20} \mathrm{~J}$
91. (4) The correct match is

A-II, B-III, C-IV, D-I
$\mathrm{E}_{\text {cell }}^{0}$ can be determined by using this formula.
$\mathrm{E}_{\text {cell }}^{\mathrm{o}}=\mathrm{E}_{\text {right }}-\mathrm{E}_{\text {left }}=\mathrm{E}_{\text {cathode }}-\mathrm{E}_{\text {anode }}$
92. (3)

Antiaromatic
93. (3) Due to inert effect the stability of lower oxidation state gradually increases while stability of higher oxidation state gradually decreases down the group in elements of group $13^{\text {th }}$ to $15^{\text {th }}$. So correct orders are :
(iii) $\mathrm{Pb}^{2+}>\mathrm{Pb}^{4+}, \mathrm{Bi}^{3+}>\mathrm{Bi}^{5+}$
(iv) $\mathrm{Sn}^{2+}<\mathrm{Pb}^{2+}, \mathrm{Sn}^{4+}>\mathrm{Pb}^{4+}$
94. (2) $k=\frac{2.303}{t} \log \frac{V_{\infty}}{V_{\infty}-V_{t}}$ gives constant value of k .

Hence, it is $1^{\text {st }}$ order reaction
95. (2) The correct match is as

A-III, B-I, C-IV, D-II.
96. (2) $\stackrel{\ddot{\mathrm{N}}}{2} 2-\stackrel{\ddot{\mathrm{N}}}{2}$ Neutral ligand

It does not act as bidentate because when it acts as bidentate a three membered ring (chelat complex) will be formed, that will be highly strained.
97. (3) $\mathrm{E}_{\text {metal }}=\frac{\mathrm{W} \times 96500}{I t}=\frac{22.2 \times 96500}{2 \times 5 \times 60 \times 60}=59.5$ Oxidation number of the metal $=\frac{177}{59.5}=+3$
98. (3)

99. (2) A-II, B-I, C-IV, D-III
100. (3) C (graphite) $\rightarrow \mathrm{C}$ (diamond), $\Delta \mathrm{H}=1.9 \mathrm{~kJ}$
$\mathrm{C}($ graphite $)+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}, \ldots \ldots \ldots-\Delta \mathrm{H}_{1}$
$\mathrm{C}($ diamond $)+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}, \ldots \ldots .-\Delta \mathrm{H}_{2}$
$\left(-\Delta \mathrm{H}_{1}\right)-\left(-\Delta \mathrm{H}_{2}\right)=1.9 \mathrm{~kJ}$ or $\Delta \mathrm{H}_{2}=\Delta \mathrm{H}_{1}+1.9$
For combustion of $6 \mathrm{~g}, \Delta \mathrm{H}_{2}>\Delta \mathrm{H}_{1}$ by $1.9 / 2=0.95 \mathrm{~kJ}$

BOTANY

Section - A (35 Ouestions)

101. (2) (NCERT $12^{\text {th }} \operatorname{Pg} 102$, based on Figure 6.5)
102. (2) (NCERT 11 ${ }^{\text {th }}$, Page no- 26, $2^{\text {nd }}$ Paragraph, Line no-1-12)
103. (3) (NCERT 12 ${ }^{\text {th }} \operatorname{Pg} 87$, Para 3, Line 16)
104. (3) (NCERT $12^{\text {th }}$ Pg. 78 , Para 1, Line 4)
105. (3) (NCERT $12^{\text {th }} \operatorname{Pg} 106,6.4 .2$)
106. (1) (NCERT $12^{\text {th }} \mathrm{Pg} 75$, Figure 5.5)
107. (3) [NCERT $11^{\text {th }}$ Newly added family]
108. (1) (NCERT $11^{\text {th }}$, Page no- 27, $2^{\text {nd }}$ Paragraph, Line no-5-7)
109. (1) (NCERT $11^{\text {th }}$, Page no- $7,2^{\text {nd }}$ paragraph, line no- 21,22)
110. (1) (NCERT $12^{\text {th }}$, Page no- $28,1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$ paragraph, conceptual)
111. (1) (NCERT 11 ${ }^{\text {th }}$ Para 10.1.1, Page no. 163)
112. (1) (NCERT 11 ${ }^{\text {th }}$ Para 8.5.8, Page no. 137)
113. (2) (NCERT $11{ }^{\text {th }}$ Para8.5.3.4, Page no. 134)
114. (2) (NCERT $11^{\text {th }}$ Page no. 216, 13.7.2, Page no. 218, 13.8-CONCEPT BASED and Page no. $2201^{\text {st }}$ paragraph)
115. (3) (NCERT $11^{\text {th }}$ Page no. $212-19^{\text {th }}$ line and Page 13.6 -concept based)
116. (4) [NCERT 11 ${ }^{\text {th }}$, Page 248, point 15.4.3.1]
117. (1) [NCERT $11^{\text {th }}$, Page 248, Point 15.4.3.1]
118. (2) (NCERT 12 ${ }^{\text {th }}$ Page no. 247 fig. 14.3 conceptual)
119. (1) (NCERT 11 ${ }^{\text {th }}$ Pg.231, 14.4.1 Last para $2^{\text {nd }}$ line)
120. (4) (NCERT $12^{\text {th }}$ Page no- $34,1^{\text {st }}$ paragraph, Concept based)
121. (3) (NCERT $11^{\text {th }}$ Page no. 31 fig. $3.1,32$ to 33, name of the plant is fucus and its life cycle diplontic so diploid is dominant, not gametophyte.)
122. (1) (NCERT $12^{\text {th }}$ Page No 38, Last para)
123. (2) (NCERT 12 ${ }^{\text {th }} \operatorname{Pg}$ 117, based on Figure 6.14)
124. (4) (NCERT $\left.12{ }^{\text {th }} \operatorname{Pg} 85,5.4\right)$
125. (3) (NCERT 11 ${ }^{\text {th }}$ Para 10.1.1, Page no. 163)
126. (4) (NCERT $11^{\text {th }}$ Page no. 29 last line)
127. (3) [NCERT $11^{\text {th }}$, Page no. 93 (First paragraph) and Point no. 6.3.4]
128. (3) [NCERT $11^{\text {th }}$ Page No. 67; Sub-topic 5.1.2]
129. (2) [NCERT 11 ${ }^{\text {th }}$ Page No. 70; Sub-topic 5.3]
130. (3) (NCERT $12^{\text {th }} \mathrm{Pg} 85$ based on polygenic)
131. (3) (NCERT $11^{\text {th }} \mathrm{Pg} .237,2^{\text {nd }}$ line)
132. (2) (NCERT $12^{\text {th }} \operatorname{Pg} 122$, Para 2)
133. (4) (NCERT $12^{\text {th }} \operatorname{Pg} 76$, based on concept of Incomplete Dominance \& law of independent assortment)
134. (3) (NCERT $11^{\text {th }}$ Page no. 34 to 35 , conceptual.)
135. (3) (NCERT $12^{\text {th }} \mathrm{Pg} 101$, Biochemical Characterisation of Transforming Principle)

SECTION - B (Attempt Any 10 Questions)

136. (4) (NCERT $11^{\text {th }}$ Page no- 24, Paragraph2.3.3, Line no- 9 and 10)
137. (3) (NCERT 12 ${ }^{\text {th }}$ Page No. 246 2nd Para, 1st Line)
138. (2) [NCERT $11^{\text {th }}$ Page No. 79, 80 \& Newly added family]
139. (1) (NCERT 11 ${ }^{\text {th }}$ Para 8.5.8, Page no. 137)
140. (2) (NCERT 12 ${ }^{\text {th }} \operatorname{Pg}$ 105, The Experimental Proof; Pg 106, Para 3; Pg 107, Para 2)
141. (4) [NCERT 11 ${ }^{\text {th }}$, Page 249, Point 15.4.3.2]
142. (1) [NCERT 11 ${ }^{\text {th }}$, Page no. 88, Subpoint 6.2.1]
143. (3) (NCERT $11^{\text {th }}$ Para 10.2, 10.4 conceptual based, Page no.165-170)
144. (3) (NCERT 11 ${ }^{\text {th }}$ Pg.230, 14.3, 3rd Paragraph, 1st line)
145. (2) (NCERT 11 ${ }^{\text {th }}$ Page no. 218, $1^{\text {st }}$ paragraph)
146. (2) (NCERT 11 ${ }^{\text {th }}$, Page no- 23, Paragraph $-2^{\text {nd }}$, Line no-9-19)
147. (1) NCERT $12^{\text {th }}$, Page no- 34, Paragraph- 2.3, Line no- 5-8
148. (4) (NCERT $11^{\text {th }}$, Page no- 11, Table-1.1)
149. (1) (NCERT $11^{\text {th }}$ Para 8.5.8, Page no.137)
150. (4) (NCERT $11^{\text {th }}$ Page no. 37 fig. 3.3 (d), salvinia is heterosporous so produces male and female gametophyte i.e. dioecious gametophyte.)

ZOOLOGY

Section - A (35 Questions)

151. (4) (NCERT $11^{\text {th }}$ Page No.- 183 - Respiratory organs)
152. (3) (NCERT 12 ${ }^{\text {th }}$ page no.60, last para)
153. (3) (NCERT $12^{\text {th }}$ page no.64, Para 2, line 2)
154. (3) (NCERT $11^{\text {th }}$ NCERT - Page No.- 196 Coagulation of blood)
155. (3) [NCERT $12^{\text {th }}$ P.No. $1952^{\text {nd }}$ and $3^{\text {rd }}$ Line]
156. (1) (NCERT $12^{\text {th }}$ Page No.- 134 Immunity)
157. (3) (NCERT $11^{\text {th }}$ Page No. 198)
158. (4) (NCERT 12 $2^{\text {th }}$ Page no. 260 , last line of $1^{\text {st }}$ and fig. 15.1,based)
159. (2) (NCERT $11^{\text {th }}$ Page No. 336; Last line)
160. (2) NCERT $11^{\text {th }}$ P.No.309, Fig.20.6]
161. (2) [NCERT 11 ${ }^{\text {th }}$ P.No.312, Disorders]
162. (1) [NCERT $11^{\text {th }}$ P.No.321, Line $9^{\text {th }}$ to $\left.12^{\text {th }}\right]$
163. (2) [NCERT $11^{\text {th }}$ P.No. $321,20^{\text {th }}$ Line]
164. (3) (NCERT 11 ${ }^{\text {th }}$ Page No. 299; 1st line)
165. (1) (NCERT $11^{\text {th }}$ Mixed question)
166. (4) (NCERT $11^{\text {th }}$ Page No. 338, 2nd paragraph)
167. (4) (NCERT 12 $2^{\text {th }}$ Page no- 139, Figure 7.10)
168. (2) (NCERT 11 ${ }^{\text {th }}$, Page no- 156, Figure-9.6)
169. (4) (NCERT $12^{\text {th }}$ page no- $129,1^{\text {st }}$ paragraph, line no- 11-13)
170. (3) [NCERT $12{ }^{\text {th }}$ P.No. $198,2^{\text {nd }}$ para $3^{\text {rd }}$ Line]
171. (2) [NCERT $12^{\text {th }}$ P.No.312, 208 Last para]
172. (1) (NCERT $12^{\text {th }}$ Page No.- 155 - Common Diseases)
173. (3) (NCERT $11^{\text {th }}$, Page no- $147,2^{\text {nd }}$ paragraph, Line no- $1^{\text {st }}$ line)
174. (4) (NCERT $12^{\text {th }}$ Para 10.1, 10.2.2, 10.5 Page no.181,182,187)
175. (3) (NCERT $11^{\text {th }}$ based extra)
176. (2) (NCERT $12^{\text {th }}$ page no-128, $1^{\text {st }}$ paragraph, line no-1 and 2)
177. (4) [NCERT 11 th P.No.310, Last Para]
178. (2) (NCERT $12^{\text {th }}$ page no. 52 , factual)
179. (3) (NCERT $12^{\text {th }}$ page no.62, para1)
180. (2) (NCERT $12^{\text {th }}$ page no 43, para1)
181. (2) (NCERT 12 ${ }^{\text {th }}$ page no 44, para1)
182. (2) (NCERT 11 ${ }^{\text {th }}$ page no 112, para1, line 16)
183. (2) (NCERT 11 ${ }^{\text {th }}$ Page No. 53; examples of arthropoda)
184. (4) (NCERT 12 ${ }^{\text {th }}$ Para 10.2.1 Page no. 182)
185. (3) (NCERT $12{ }^{\text {th }}$ NCERT Page no. 260, s $^{\text {st }}$ para last line and fig.15.1)

SECTION - B (Attempt Any 10 Questions)

186. (3) (NCERT 11th Page No.- 199 - Cardiac cycle)
187. (1) (NCERT 12 ${ }^{\text {th }}$ Page No.- 156 - Cancer)
188. (3) (NCERT 11 ${ }^{\text {th }}$ page no.104, para2)
189. (2) (NCERT $11^{\text {th }}$ page no 102 , last para)
190. (2) (NCERT 11 ${ }^{\text {th }}$ Page No. 297; 4th line)
191. (4) (NCERT $12^{\text {th }}$ page no-127, $3^{\text {rd }}$ paragraph, line no-34)
192. (2) (NCERT 11 ${ }^{\text {th }}$, Page no- 158, Paragraph9.12.5)
193. (4) (NCERT 12 ${ }^{\text {th }}$ Para 10.4 Page no. 185)
194. (3) [NCERT $12^{\text {th }}$ P.No.213, $2^{\text {nd }}$ and $3^{\text {rd }}$ para]
195. (3) (NCERT $11^{\text {th }}$ Page No. 339; 8th line of 4th Paragraph)
196. (4) (NCERT $12{ }^{\text {th }}$ Page No. 142-143)
197. (4) [NCERT $11^{\text {th }}$ P.No.304,Last Para]
198. (4) [NCERT 11 th P.No.321, Forebrain and Hindbrain para]
199. (3) (NCERT $12^{\text {th }}$ Page no. 264 to 265 .)
200. (4) (NCERT 12 $2^{\text {th }}$ Page no. $2291^{\text {st }}$ para, $6^{\text {th }}$ LINE)
