ANSWER KEY \& SOLUTION KEY FINAL ROUND - 16 (PCB) Dt.25.04.2024

PHYSICS

SECTION - A (35 Questions)

1. (1) At $x=0, t=0, v=0$

So $K E=0, U=0 \Rightarrow T E=0$
So at final position
K.E. $=-$ P.E. $\Rightarrow-\left\{2^{2}-3(2)^{2}\right\}=2 \mathrm{~J}$
02. (4) 1 Newton $=10^{-5}$ Dynes (Wrong among all options)
03. (3) $C^{\prime}=k C$, and $U^{\prime}=\frac{q^{2}}{2 k C}$.

Due to dielectric slab field between plates decreases hence force decreases.
04. (3) $\chi_{m}=\frac{I}{H}, \chi_{m}$ will be larger when I is larger. Assertion is true but Reason is false.
05. (2) Fringe width,
$\beta=\frac{D \lambda}{d}=\frac{1.5 \times 589 \times 10^{-9}}{0.15 \times 10^{-3}}$
$=5.9 \times 10^{-3} \mathrm{~m}=5.9 \mathrm{~mm}$
06.
(3) $I_{\mathrm{rms}}=\frac{i_{m}}{\sqrt{2}}=\frac{5}{\sqrt{2}} \mathrm{~A}$

If voltage applied is $\mathrm{V}=\mathrm{V}_{\mathrm{m}} \sin \omega t$, i given indicates that it is ahead of V by δ where $0<\delta<90^{\circ}$ which indicates that the circuit contains R and C .
07. (3) Volume $=a^{3}=(7.023)^{3}=373.715 m^{3}$ ln significant figures volume of cube will be $3.737 m^{3}$ because its side has four significant figures.
08. (4)
09. (2) In Streamline flow of liquid velocity of each particle at a particular cross section is constant. So velocity is same. Hence, the correct answer is option (2).
10. (2) Radiation pressure on reflecting surface is $P=\frac{2 I}{c}=\frac{2 \times 1350}{3 \times 10^{8}} \mathrm{Nm}^{-2}$

Total force on the surface $=P A=\frac{2 \times 1350}{3 \times 10^{8}} \times 10^{4}$

$$
=9 \times 10^{-2} \mathrm{~N}
$$

11. (1) $\mathrm{As}_{\mathrm{V}}^{\mathrm{C}}=3 \mathrm{~V}_{\mathrm{R}} \Rightarrow$
$V_{0}\left(1-e^{-t / R C}\right)=3 V_{0} e^{-t / R C} \Rightarrow$
$V_{R}=\frac{V_{0}}{4}=V_{0} e^{-\frac{t}{R C}} \Rightarrow \frac{1}{4}=e^{-\frac{t}{R C}}$
12.

$=10^{12}$ dyne $/ \mathrm{cm}^{2}$.
13. (3) Mutual inductance of the pair of coils depends upon relative position and orientation of the two coils as $\mathrm{M}=\mathrm{K} \sqrt{L_{1} L_{2}}$.
14. (3) $\bar{F}_{\text {ext }}$ on system $=0$ Hence $\bar{P}_{\text {system }}=$ constant
$\bar{P}_{i}=\bar{P}_{f} \quad M_{1} \bar{v}_{1}+M_{2} \bar{v}_{2}=M^{\prime} \vec{v}^{\prime}$
$(1000)(50) \hat{i}+250(0) \hat{i}=1250 \vec{v}^{\prime}$,
$v^{\prime}=40 \hat{i} \mathrm{~km} /$ hour.
15. (3) $f_{r_{\max }}=T$
$\mu N=T$
$0.5(2+8) \mathrm{g}=\mathrm{Mg}$

$$
\mathrm{M}=5 \mathrm{~kg}
$$

16. (3) For UCM, $a_{r} \neq 0$ and $a_{t}=0$.
17. (2) Let B moves with V at angle θ with horizontal By the momentum conservation
along $x \quad 3 m \times 10=2 m v \cos \theta$
$\Rightarrow \mathrm{v} \cos \theta=15$
along $y \quad 0=m \times 40+2 m v \sin \theta$
$\Rightarrow \mathrm{v} \sin \theta=20$
$\mathrm{v}=\sqrt{(\mathrm{v} \sin \theta)^{2}+(\mathrm{v} \cos \theta)^{2}}=25 \mathrm{~m} / \mathrm{s}$.
18. (4)

$=\hat{i}(-4+4)-\hat{j}(-2+3)+\hat{k}(4-6)=0 \hat{i}-1 \hat{j}-2 \hat{k}$
\vec{L} has components along $-y$ axis $-z$ axis but it has no component in the x -axis. The angular momentum is in $y z$ plane. i.e., perpendicular to x axis.
19. (3) Here, $\gamma=5 \times 10^{-4} \mathrm{~K}^{-1}=5 \times 10^{-40} \mathrm{C}^{-1}$

Let ρ_{2}, ρ_{1} be the density of glycerin at temperature $t_{2}^{\circ} \mathrm{C}$ and $t_{1}^{\circ} \mathrm{C}$ respectively. Then
$\rho_{2}=\rho_{1}\left[1-\gamma\left(t_{2}-t_{1}\right)\right]=\rho_{1}-\rho_{1} \gamma\left(t_{2}-t_{1}\right)$
or $\frac{\rho_{1}-\rho_{2}}{\rho_{1}}=\gamma\left(t_{2}-t_{1}\right)$
Fractional change in the density of glycerin
$\frac{\rho_{1}-\rho_{2}}{\rho_{1}}=\gamma\left(t_{2}-t_{1}\right)=\left(5 \times 10^{-4}\right) \times 40=0.02$
20. (3) C_{2} and C_{3} are parallel so $\mathrm{V}_{2}=\mathrm{V}_{3}$
C_{1} and combination of $\mathrm{C}_{2} \& \mathrm{C}_{3}$ is in series.
So, $V=V_{2}+V_{1}$ or $V=V_{3}+V_{1}$
and also $\mathrm{Q}_{1}=\mathrm{Q}_{2}+\mathrm{Q}_{3}$
21. (4) Graph between horizontal velocity and time in a projectile motion is a straight line parallel to the time axis as the horizontal velocity remains constant (equal to $u \cos \theta$) with time.
22. (4) If the path of the charged particle is circular, then radius of circular path is directly proportional to the speed and mass of the particle as $r=\frac{m v}{q_{0} B}$
\therefore Centripetal force $=\frac{m \nu^{2}}{r}=q_{0} \nu B$
Also, $r=\sqrt{2 m K} / q B$
23. (3) When key K is pressed, current through the electromagnet increases from zero to maximum. Eddy currents are produced in the ring. According to Lenz's law, the direction of eddy currents is such that the ring is repelled and it jumps out of the core.
24. (2)As springs are in parallel, so their effective spring constant,
$K=k_{1}+k_{2}$
\therefore Frequency of oscillations,
$v=\frac{1}{2 \pi} \sqrt{\frac{K}{M}}=\frac{1}{2 \pi} \sqrt{\frac{k_{1}+k_{2}}{M}}$.
25. (1)
26. (3)
(3) $R_{\text {equivalent }}=\frac{(30+30) 30}{(30+30)+30}=\frac{60 \times 30}{90}=20 \Omega$
$\therefore i=\frac{V}{R}=\frac{2}{20}=\frac{1}{10}$ ampere
27. (2) Momentum
$M u=\frac{E}{c}=\frac{h v}{c}$
Recoil energy
$\frac{1}{2} M u^{2}=\frac{1}{2} \frac{M^{2} u^{2}}{M}=\frac{1}{2 M}\left(\frac{h v}{c}\right)^{2}=\frac{h^{2} v^{2}}{2 M c^{2}}$.
28. (3)

29. (2) On reverse biasing potential barrier increases and in forward biasing it decreases
30. (3) In figure, $A C=l \cos \theta$
$\therefore O C=O A-A C$
$=l-l \cos \theta$
$=l(1-\cos \theta)$
Max. K.E. of bob at O
$=$ Max. P.E. of bob at B
$=m g \times \mathrm{OC}$

$=m g l(1-\cos \theta)$.
31. (3)
32. (4)
$\Delta x=(\mu-1) t=1 \lambda$
for one maximum shift
$t=\frac{\lambda}{\mu-1}$

33. (3)

OA-hooks law

D-breaking stress
E-Fracture point
B-elastic limit
C-yield point

34. (1) For concave mirror $\frac{1}{v}+\frac{1}{u}=\frac{1}{-f}$
$\Rightarrow \frac{1}{v}=-\frac{1}{u}-\frac{1}{f}$
on comparing $y=-\mathrm{m} x-\mathrm{c}$

35. (1) Equations show that phase difference between two waves,
$\phi=\pi / 2$
\therefore from $R=\sqrt{a^{2}+b^{2}+2 a b \cos \pi / 2}$

$$
\begin{aligned}
& =\sqrt{a^{2}+a^{2}+2 a^{2} \cos 90^{0}} \\
& =\sqrt{2 a^{2}}=a \sqrt{2}
\end{aligned}
$$

Both the statements are true.

SECTION - B (Attempt Any 10 Questions)

36. (3) $\frac{d T}{d t}=\frac{e A \sigma}{m c}\left(T^{4}-T_{0}^{4}\right)=\frac{e\left(6 a^{2}\right) \sigma}{\left(a^{3} \times \rho\right) c}\left(T^{4}-T_{0}^{4}\right)$
\Rightarrow For the same fall in temperature, time $d t \propto a$
$\frac{d t_{2}}{d t_{1}}=\frac{a_{2}}{a_{1}}=\frac{2 \mathrm{~cm}}{1 \mathrm{~cm}}$
$\Rightarrow d t_{2}=2 \times d t_{1}=2 \times 100 \mathrm{sec}=200 \mathrm{sec}$
(As $A=6 a^{2}$ and $m=V \times \rho=a^{3} \times \rho$)
37. (3) From conservation of momentum
$m v=(m+\mathrm{M}) v^{\prime}$
$0.5 v=(0.5+1.0) v^{\prime}$
$\Rightarrow \quad v^{\prime}=\frac{v}{3}$
From COME,
$(m+\mathrm{M}) \mathrm{gh}=\frac{1}{2}(m+M)\left(v^{\prime}\right)^{2}$
$10 \times 1.8=\frac{1}{2} \times \frac{v^{2}}{9}$
$\Rightarrow v=18 \mathrm{~m} / \mathrm{s}$
38. (1) Dynamic lift of an aeroplane is based on Bernoulli's principle.
39. (1) Applying Kirchhoff's voltage law in the given loop,

$-2 i+8-4-1 \times i-9 i=0 \Rightarrow i=\frac{1}{3} \mathrm{~A}$
Potential difference across $\mathrm{PQ}=\frac{1}{3} \times 9=3 \mathrm{~V}$
40. (2)

For the system to be equilibrium, net field at A should be zero
$\sqrt{2} E_{1}+E_{2}=E_{3}$
$\therefore \frac{k Q \times \sqrt{2}}{a^{2}}+\frac{k Q}{(\sqrt{2} a)^{2}}=\frac{k q}{\left(\frac{a}{\sqrt{2}}\right)^{2}}$
$\Rightarrow \frac{Q \sqrt{2}}{1}+\frac{Q}{2}=2 q \Rightarrow q=\frac{Q}{4}(2 \sqrt{2}+1)$
41. (2) For P.E. E : $\lambda \leq \frac{h c}{W_{e}}$
$\lambda \leq \frac{1240 \mathrm{~nm}-\mathrm{eV}}{3 \mathrm{eV}}$
$\lambda \leq 413.33 \mathrm{~nm}$
$\lambda \approx 414 \mathrm{~nm}$
42. (3) $n=6$
$A B$: isochoric process, $\Delta W_{A B}=0$
$B C$: isobaric process,

$$
\begin{aligned}
\Delta W_{B C}=n R \Delta T & =n R\left(T_{C}-T_{B}\right) \\
& =6 \mathrm{R}(2200-800) \\
& =8400 \mathrm{R}
\end{aligned}
$$

$C D$: isochoric process, $\Delta W_{C D}=0$
$D A$: isobaric process,

$$
\begin{aligned}
\Delta W_{D A}=n R \Delta T & =n R\left(T_{A}-T_{D}\right) \\
& =6 \mathrm{R}(600-1200) \\
& =-3600 \mathrm{R}
\end{aligned}
$$

$\Delta W_{\text {cyclic }}=\Delta W_{A B}+\Delta W_{B C}+\Delta W_{C D}+\Delta W_{D A}$
$=8400 R-3600 R=4800 R$
43. (4) The magnetic field at $\mathrm{P}(a, 0, a)$ due to loop is equal to the vector sum of the magnetic fields produced by loops ABCDA and AFEBA as shown in the figure.
Magnetic field due to loop ABCDA will be along \hat{i} and due to loop AFEBA along \hat{k}. Magnitude of magnetic field due to both the loops will be equal.
Therefore, direction of resultant magnetic field at P will be $\frac{1}{\sqrt{2}}(\hat{i}+\hat{k})$.

44. (4) Time to reach zero to peak value
$=\frac{T}{4} \Rightarrow \frac{1}{50 \times 4} \Rightarrow \frac{1}{200} \Rightarrow 5 \times 10^{-3} \mathrm{sec}$
$\mathrm{I}_{\text {peak }}=\sqrt{2} I_{r m s} \Rightarrow \sqrt{2} \times 10=14.14 \mathrm{Amp}$
45. (2) Let the momentum of the third piece be $p_{x} \hat{i}+p_{y} \hat{j}$.
By the momentum conservation
$0=-3 p \hat{i}-4 p \hat{j}+p_{x} \hat{i}+p_{y} \hat{j}$
$0=\left(-3 p+p_{x}\right) \hat{i}+\left(-4 p+p_{y}\right) \hat{j}$
$-3 p+p_{x}=0 \Rightarrow p_{x}=3 p$
$-4 p+p_{y}=0 \Rightarrow p_{y}=4 p$
The momentum of the third piece

$|\vec{P}|=\sqrt{(3 p)^{2}+(4 p)^{2}}=5 p$
$\tan \theta=\frac{4 p}{3 p} \Rightarrow \theta=\tan ^{-1} \frac{4}{3}$.
46. (2) According to ideal gas equation
$P=\frac{\rho R T}{M}$ or $\rho=\frac{P M}{R T}$ or $\rho \propto \frac{P}{T}$
From the graph,
$\left(\frac{P}{T}\right)_{A}=\frac{P_{0}}{T_{0}}$ and $\left(\frac{P}{T}\right)_{B}=\frac{3}{2}\left(\frac{P_{0}}{T_{0}}\right)$
or $\left(\frac{P}{T}\right)_{B}=\frac{3}{2}\left(\frac{P}{T}\right)_{A}$
$\therefore \rho_{B}=\frac{3}{2} \rho_{A}=\frac{3}{2} \rho_{0}$.
47. (3) $I_{A} \omega_{A}=I_{B} \omega_{B} ; \therefore \frac{\omega_{A}}{\omega_{B}}=\frac{I_{B}}{I_{A}}$

Kinetic energy $=\frac{1}{2} I \omega^{2}$
$\therefore \frac{(K E)_{A}}{(K E)_{B}}=\frac{\frac{1}{2} I_{A} \omega_{A}^{2}}{\frac{1}{2} I_{B} \omega_{B}^{2}}=\frac{I_{A}}{I_{B}} \times\left(\frac{I_{B}}{I_{A}}\right)^{2}=\frac{I_{B}}{I_{A}}$ (Using

As $I_{A}>I_{B}($ Given $) ; \therefore(\mathrm{KE})_{A}<(\mathrm{KE})_{B}$
48. (2) A-4; B-2 ; C-1 ; D-3

Lyman series, $\lambda_{\text {max }}=4 / 3 R$ and $\lambda_{\text {min }}=1 / R$

Balmer series, $\lambda_{\text {max }}=36 / 5 R$ and $\lambda_{\text {min }}=4 / R$
Paschen series, $\lambda_{\text {max }}=144 / 7 R$ and $\lambda_{\text {min }}=9 / R$

Bracket series, $\lambda_{\text {max }}=400 / 9 R$ and $\lambda_{\text {min }}=16 / R$
49. (2) x and y both are in horizontal plane in two perpendicular direction so
$v=v \sqrt{3 i}+v \hat{j}$
$v_{x}=v \sqrt{3}, v_{y}=v$
$v \sqrt{3}=\frac{x}{t}, v=\frac{y}{t}$
$x=\sqrt{3} y$
50. (4) $n \mathrm{VSD}=(n-1) \mathrm{MSD}$
$1 \mathrm{VSD}=\frac{n-1}{n} \mathrm{MSD}$

$$
=\frac{n-1}{n} \times a c m
$$

Least count $=1$ MSD -1 VSD

$$
=\left[a-\frac{n-1}{n} a\right] \mathrm{cm}
$$

$\Rightarrow \frac{a}{n} c m \Rightarrow \frac{10 a}{n} m m$

CHEMISTRY

SECTION - A (35 Questions)

51. (3) Number of protons in one molecule of CaCO_{3} $=20+6+8 \times 3=50$
Number of protons in $10 \mathrm{~g} \mathrm{CaCO}_{3}$
$=$ number of molecules $\times 50$
$=\frac{10}{100} \times 6.023 \times 10^{23} \times 50=3.0115 \times 10^{24}$
$\left(\right.$ Molecular weight of $\left.\mathrm{CaCO}_{3}=100\right)$
52. (4) $t_{1 / 2}=k a^{1-n}, n$ being order, $k=$ rate constant $\log \mathrm{t}_{1 / 2}=\log \mathrm{k}+(1-\mathrm{n}) \log \mathrm{a}$
Slope, $(1-\mathrm{n})=-2, \mathrm{n}=3$.
53. (1)

54. (4)

55. (3) Ionisation energy increases from left to right in a period. But oxygen after removal of first electron gets stable half-filled electronic configuration and thus its second ionisation energy is higher than that of fluorine. Thus, order of $2^{\text {nd }}$ ionisation energy is $\mathrm{C}<\mathrm{N}<\mathrm{F}<\mathrm{O}$.
56. (2) $\mathrm{o}-, \mathrm{m}-, \mathrm{p}$ - derivatives have $\alpha=60^{\circ}, 120^{\circ}$ and 180° respectively, p-derivative has zero dipole moment. Dipole moment of m-dichlorobenzene is more than toluene.
57. (3) Angular momentum $(\mathrm{mvr})=\frac{\mathrm{nh}}{2 \pi}$
58. (2) In the process of neutralization heat is always released.
59. (1) $\mathrm{Na} /$ liq. NH_{3}-trans addition.
60. (1)

61. (4) NO_{3}^{-}has sp^{2} hybridisation and three resonating structures.
Hence ONO bond angle $=120^{\circ}$.
NO_{2}^{+}has sp hybridisation and N does not contain lone pair of electrons. Hence shape is linear $(\ddot{O}=\stackrel{+}{\mathrm{N}}=\ddot{\mathrm{O}})$ with bond angle $=180^{\circ}$.
NO_{2} has one electron whereas NO_{2}^{-}has one lone pair of electrons. Hence in NO_{2}^{-}, the repulsion on the bond pairs are more and angle is less.

62 (2) $\mathrm{p} \pi-\mathrm{p} \pi$ bonding is weak in case of
phosphorus because of comparatively larger size it is unable to form multiple bonds. Hence, P_{2} gets converted to P_{4}.
63. (2) $\mathrm{K}=\frac{[\mathrm{NOCl}]^{2}}{[\mathrm{NO}]^{2}\left[\mathrm{Cl}_{2}\right]}$
64. (1) Among the given statements, A, C and E are incorrect while statements B and D are correct. The correct form of A, C and E are

- The boiling point of a solution is always higher than the pure solvent.
- Passage of spontaneous flow of solvent molecules from the solvent to the solution through a semipermeable membrane is called osmosis.
Cryoscopic constant $\left(\mathrm{K}_{\mathrm{f}}\right)$ decreases with increase in enthalpy of fusion. $\left(\Delta_{\text {fus }} \mathrm{H}\right)$.

65. (2) Factual
66. (4)

67. (4) In red phosphorus, one of the P_{4} bonds is broken, and one additional bond is formed with a neighbouring tetrahedron resulting in a more chainlike structure.
It is formed by heating white phosphorus to $250^{\circ} \mathrm{C}$, it becomes an amorphous network of atoms that reduces strain and given greater stability thereby renders it unreactive.
68. (4) The correct match is A-II, B-IV, C-III, D-I
69. (4) $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{g})$,

Equilibrium constant depends on temperature only.
70. (1) A-I, B-II, C-III, D-IV
71. (2) A is but-2-yne; B is cis-2-butene.
72. (1)

73. (4) Both A and R are true and R is the correct explanation of A.
74. (4) Solvate isomers.
75. (3) For $\mathrm{KBr}, \mathrm{i}=1+\alpha=1+0.80=1.80$
$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{iK}_{\mathrm{f}} \mathrm{m}=1.80 \times 1.86 \times 0.5=1.674$
$\mathrm{T}_{\mathrm{f}}=273-1.674=271.326 \mathrm{~K}$
76. (3) Acetic acid in benzene undergoes association and forms a dimer. Therefore its molecular mass will be $60 \times 2=120$.

77. (1) C-X bond in halo benzene acquires double bond character.
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{X} \xrightarrow{-\mathrm{x}}\left(\mathrm{CH}_{3}\right)_{3} \stackrel{\oplus}{\mathrm{C}}\left(2^{0}\right.$ carbocation $)$
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}-\mathrm{X} \xrightarrow{-\mathrm{x}}\left(\mathrm{CH}_{3}\right)_{3} \stackrel{\oplus}{\mathrm{C}}\left(3^{0}\right.$ carbocation $)$
In aryl halides reactivity can be increased by substituting EWG.
78. (2) $2^{n-1}+2^{\frac{n}{2}-1}$
79. (1) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{CO}$
80. (3) A regular decrease in the size of the atoms and ions in lanthanide series from La^{3+} to Lu^{3+} is called lanthanide contraction. The similarity in size of the atoms of Zr and Hf is due to the lanthanide contraction.
81. (2) Higher the reduction potential stronger is the oxidising agent.
82. (2) In molten NaCl , current is carried by the movement of ions; cation towards the negative electrode (cathode) and anion towards the positive electrode (anode).
83. (3)

No. of hybridized orbital $=\mathrm{sp}^{2}+\mathrm{sp}^{2}$

$$
=3+3=6
$$

No of pure orbital $=$ No. of hydrogen +2
x no. π bonds $=4+2$ (1)
Ratio of pure and $=6: 6=6$
Hybridised orbital $=1: 1$.
84. (1) If both Assertion \& Reason are true and the Reason is the correct explanation of the Assertion
85. (2) Specific conductivity is the conductance of ions kept in a cube of side 1 unit and hence, it decreases with dilution.

SECTION - B (Attempt Any 10 Questions)

86. (1) $\lambda=\frac{\mathrm{h}}{\mathrm{mv}}$; when v is same $\lambda \propto \frac{1}{\mathrm{~m}}$

Thus, the order of wavelength is electron > hydrogen $>$ helium $>$ neon.
87. (3) $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} ; \Delta \mathrm{H}^{\mathrm{o}}=-\mathrm{a} \mathrm{kJ}$
$2 \mathrm{CO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2} ; \Delta \mathrm{H}^{\mathrm{o}}=-\mathrm{bkJ}$
Formation of CO can be written as:
$\mathrm{C}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{CO} ; \Delta \mathrm{H}^{\mathrm{o}}=$?
For getting equation (iii),
Substration equation (ii)/2 from equation (i)
Thus, $\Delta \mathrm{H}=-\mathrm{a}-(-\mathrm{b} / 2)=\mathrm{b} / 2-\mathrm{a}=\frac{\mathrm{b}-2 \mathrm{a}}{2}$
88. (1) Both are SN_{2}
89. (3) $H-\stackrel{\|}{C}-H$
gives Tollen's test but does not give halo form test as it has no

90. (2) Smaller the atom, stronger is the bond and greater the bond dissociation energy. Therefore the bond $\mathrm{C}-\mathrm{D}$ has the greatest energy or smallest atoms.
91. (4) Hybridisation is $\mathrm{sp}^{3} \mathrm{~d}^{2}$.
92. (2) $\mathrm{In} \mathrm{FeS}_{2}$ oxidation number of S is -1 .
$+2+2 \mathrm{x}=0 \Rightarrow \mathrm{x}=-1$.
93. (4) $2 \mathrm{~N}_{2} \mathrm{O}_{5}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$

Rate $=-\frac{1}{2} \frac{\mathrm{~d}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{\mathrm{dt}}=+\frac{1}{4} \frac{\mathrm{~d}\left[\mathrm{NO}_{2}\right]}{\mathrm{dt}}$
\therefore Rate of decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ to rate of formation of NO_{2} is

$$
-\frac{1}{2} \frac{\mathrm{~d}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{\mathrm{dt}}: \frac{1}{4} \frac{\mathrm{~d}\left[\mathrm{NO}_{2}\right]}{\mathrm{dt}} \Rightarrow \frac{\frac{-\mathrm{d}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right]}{\mathrm{dt}}}{\frac{\mathrm{~d}\left[\mathrm{NO}_{2}\right]}{\mathrm{dt}}}=\frac{2}{4}=1: 2
$$

94. (1)

D-Glucose

D-Galactose

Differ in configuration of fourth carbon. Hence they of C_{4} - epimers

α-D fructose

β-D fructose

Differs in configuration of second carbon which is C_{2} anomers.
95. (2) The given hint is

The products obtained from first reaction gives an idea about alkene i.e 2 - methyl-2-butene.
96. (2) Among the given statements, A and B are correct while the statements C, D and E are incorrect.
Their corrected form is:

- The primary valency of the metal ion is satisfied by negative ions.
- The primary valency are normality ionisable.
- Neutral molecules satisfied the secondary valencies in a complex.

97. (3) VA group includes N, P as non-metals, As and Sb as metalloids and Bi is a metal.
98. (2) A is true but R is false. The correct form of R is:

Gold has a higher reduction potential than the given metals. Hence, AuCl_{3} will react with these metals.
99. (1)

100. (3) Alcohols are less acidic than water except methanol.

BOTANY

Section - A (35 Questions)

101. (2) (NCERT 11 ${ }^{\text {th }}$, Page no. 92, Line no. 0709)
102. (4) (NCERT $12^{\text {th }}$ Page no $23,2^{\text {nd }}$ Paragraph, Line no- 18 and 19)
103. (2) (NCERT 12 ${ }^{\text {th }}$ Page no- $262^{\text {nd }}$ Paragraph, Line no- 3 and 4)
104. (3) (NCERT $12^{\text {th }}$ Page no- $36,3^{\text {rd }}$ paragraph, line no- 23)
105. (3) (NCERT 11 ${ }^{\text {th }}$, Page 245, point 15.3 (Line no. 01-02))
106. (4) (NCERT $11^{\text {th }}$ PK 3.4 PAGE NO. 38 and 39 concept based)
107. (3) (NCERT 12 ${ }^{\text {th }}, \operatorname{Pg} 110$, Last line - Connect with cell topic.)
108. (3) (NCERT $11^{\text {th }}$ PK Page no. 34 fig.3.2(d),concept)
109. (3) (NCERT $12^{\text {th }} \mathrm{Pg}$ 112, Table 6.1)
110. (2) (NCERT 11 th Para 10.4.1 based concept Page no. 186)
111. (1) (NCERT 12 th, $\operatorname{Pg} 86$, Para 1, XO mech based)
112. (4) (NCERT 12 ${ }^{\text {th }}, \operatorname{Pg} 116$, Para 2)
113. (2) (NCERT 11 ${ }^{\text {th }}$, Page No. 79, sub-topic 5.9.1)
114. (4) (NCERT 12 ${ }^{\text {th }}, \operatorname{Pg} 110$, Figure 6.11)
115. (1) (NCERT 11 ${ }^{\text {th }}$, Page No. 68, sub-topic 5.2.1)
116. (2) (NCERT 12 ${ }^{\text {th }}, \operatorname{Pg} 91$, Thalassemia - Last 3 Lines)
117. (2) (NCERT 11 th Para 10.4.1, Page no. 168/ Botany)
118. (1) (NCERT $11^{\text {th }}$ Page no. 212, point 13.6.1, Page no. 214, $2^{\text {nd }}$ paragraph - first 3 lines,Page no. 210, point 13.4, $1^{\text {st }}$ paragraph $-1^{\text {st }}$ two lines, Page no. 220, point 13.9)
119. (4) (NCERT $11^{\text {th }}$ EXEMPLAR / PAGE NO. 50)
120. (2) (NCERT $11^{\text {th }}$ Para 8.5.1, Figure 8.4 based, Page no.132/Botany)
121. (2) (NCERT $11^{\text {th }}$ Para 8.5.3.2, Figure 8.5.3.2 based, Page no.134/Botany)
122. (2) (NCERT 12 ${ }^{\text {th }}$, Page No. 115, 3rd Paragraph \& 2nd Paragraph, last two lines)
123. (4) (NCERT 12 ${ }^{\text {th }}, \operatorname{Pg} 90$, Para 2)
124. (2) (NCERT 11 ${ }^{\text {th }}-$ Page no. 209, 13.3, $3^{\text {rd }}$ paragraph, $6^{\text {th }}$ and $7^{\text {th }}$ line)
125. (1) (NCERT $11^{\text {th }}$ Page no- 24, Paragraph2.3.3, Line no-11)
126. (4) (NCERT $11^{\text {th }}$ Page no- 19, $1^{\text {st }}$ pargraph, Line no- 6 and 7)
127. (3) (NCERT $11^{\text {th }}$, Page no. 248 (Last paragraph), 250 (Line no.- 01-03), 250 (Point 15.4.3.5) and 250 (Point 15.4.3.4)
128. (3) (NCERT $11^{\text {th }} P K$. Page no. $38,2^{\text {nd }}$ para, $3^{\text {rd }}$ line)
129. (4) (NCERT $11^{\text {th }}$, Page no- 8 , Paragraph- 1.3, Line 24, 25)
130. (3) (NCERT $12^{\text {th }}$ Page no.249, fig.14.4(d))
131. (3) (NCERT 11 ${ }^{\text {th }}$, Page No. 73, sub-topic 5.5)
132. (1) (NCERT 12 ${ }^{\text {th }}$, Pg 80, Dihybrid cross based)
133. (1) (NCERT $11^{\text {th }}$ Pg.236, Fig. 14.6)
134. (4) (NCERT $11^{\text {th }} \mathrm{Pg} .227,14.1$)
135. (3) (NCERT 12 $\left.{ }^{\text {th }}, \operatorname{Pg} 121,6.10\right)$

SECTION - B (Attempt Any 10 Questions)

136. (1) (NCERT $11^{\text {th }}$, Page 247, Point 15.4.1 (First paragraph))
137. (2) (NCERT 11 ${ }^{\text {th }}$, Page no. 93, Point- 6.3 .5 (Line no. 07-08))
138. (3) (NCERT $11^{\text {th }} \mathrm{Pg} .230,14.3$)
139. (2) (NCERT 11 ${ }^{\text {th }}$ PK.Page no.33,3.1.32 ${ }^{\text {nd }}$ para)
140. (3) (NCERT 12 ${ }^{\text {th }}$ Page no.32)
141. (2) (NCERT $11^{\text {th }}$, Page No. 74, sub-topic 5.5.1.2)
142. (4) (NCERT 12 ${ }^{\text {th }}, \operatorname{Pg} 108$, Figure 6.9 based)
143. (1) (NCERT $11^{\text {th }}$ Para 8.5.1, Figure 8.4 based, Page no. 132)
144. (2) (NCERT 11 ${ }^{\text {th }}$ Para8.5.3.1, Page no.134)
145. (3) (NCERT $11^{\text {th }}$ Page no. 210, 13.4, $4^{\text {th }}$ paragraph)
146. (4) (NCERT $\left.12{ }^{\text {th }}, \operatorname{Pg} 87,5.6 .2\right)$
147. (2) (NCERT 11 th Page no- 24, Paragraph2.3.4, Line no- 29,30)
148. (3) (NCERT $12{ }^{\text {th }}$ Page no- 30, $3^{\text {rd }}$ paragraph, Line no- 39)
149. (4) (NCERT $11^{\text {th }}$ Page no- 10, Paragraph1.3.4, Line no- 10)
150. (4) (NCERT $11^{\text {th }}$ Page no- 22, $1^{\text {st }}$ paragraph, Line no- 1 and 2)

ZOOLOGY

Section - A (35 Questions)

151. (3) (NCERT $11^{\text {th }}$, Page no- 148, Paragraph9.5, Line no- 3-7)
152. (2) (NCERT $12^{\text {th }}$ Page no- 132, $2^{\text {nd }}$ paragraph, Line no- 19 and 20)
153. (3) (NCERT $11^{\text {th }}$ page no 105 , Cardiac muscle tissue)
154. (2) (NCERT $12^{\text {th }}$ page no $59,4.2$, para 1)
155. (4) (NCERT $11^{\text {th }}$ page no. 119, para1, line9)
156. (2) (NCERT 12 ${ }^{\text {th }}$ Para10.1, exercises based, Page no.181,189)
157. (2) (NCERT $12^{\text {th }}$ Page no. 236 (iv), $5^{\text {th }}$ line.)
158. (1) (NCERT 11 th Page No. 52; 5th line of Aschelminthes)
159. (3) (NCERT $11^{\text {th }}$ P.No.312, Disorders)
160. (4) (NCERT $12{ }^{\text {th }}$ P.No. 2198 , Last para linked to DNA Fingerprinting)
161. (3) (NCERT12 ${ }^{\text {th }}$ page no 63, STD)
162. (1) (NCERT12 ${ }^{\text {th }}$ page no 61, para 2)
163. (3) (NCERT $12^{\text {th }}$ Page No. 138)
164. (1) (NCERT 11 ${ }^{\text {th }}$ Page No. 297 Regulation of Kidney Function)
165. (1) (NCERT $11^{\text {th }}$ Page No. 290, Last line)
166. (2) (NCERT 11 ${ }^{\text {th }}$ Page No. 337, 4th and 5th paragraph)
167. (1) (NCERT $11^{\text {th }}$ Page No.- 200 -Cardiac cycle)
168. (3) (NCERT 12 ${ }^{\text {th }}$ Page No.- 155 - AIDS)
169. (3) (NCERT $11^{\text {th }}$ p.no.113, fig. 7016)
170. (3) (NCERT $12^{\text {th }}$ page no 46 , para 3)
171. (4) (NCERT $12^{\text {th }}$ P.No.201, $2^{\text {nd }}$ para)
172. (3) (NCERT 11 ${ }^{\text {th }}$ P.No.321, Hind Brain : Applied)
173. (4) (NCERT $11^{\text {th }}$ Page No.- 190 - Disorders)
174. (2) (NCERT 11 ${ }^{\text {th }}$ Page No.- 197 - Lymph)
175. (4) (NCERT $11^{\text {th }}$, Page no-144, $3{ }^{\text {rd }}$ Paragraph, Line no-4)
176. (3) (NCERT $12^{\text {th }}$ Page no. $265,15.2 .1,2^{\text {nd }}$ para)
177. (3) (NCERT $12^{\text {th }}$ Page no. $2601^{\text {st }}$ para $4^{\text {th }}$ line.)
178. (2) (NCERT $12^{\text {th }}$ P.No.212, $3^{\text {rd }}$ Para)
179. (2) (NCERT $11^{\text {th }}$ P.No.306, $1^{\text {st }}$ para)
180. (2) (NCERT 11 ${ }^{\text {th }}$ P.No.312, Disorders)
181. (1) (NCERT 11 th P.No.316, Human Nervous System:Applied)
182. (3) (NCERT 12 ${ }^{\text {th }}$ Page no-129, $1^{\text {st }}$ Paragraph, Line no- 16 and 17)
183. (1) (NCERT $12{ }^{\text {th }}$ Page no- 133, $1^{\text {st }}$ Paragraph, Line no- 2 and 3)
184. (3) (NCERT 12 ${ }^{\text {th }}$ Page No.- 155 - AIDS)
185. (2) (NCERT $11^{\text {th }}$ Page No. 202-203)

SECTION - B (Attempt Any 10 Questions)

186. (3) (NCERT 11 ${ }^{\text {th }}$, Page no-150, Paragraph 2nd, Line no- 21-23)
187. (4) (NCERT $12^{\text {th }}$ Page no- $135,3{ }^{\text {rd }}$ paragraph, Conceptual)
188. (2) (NCERT 12 ${ }^{\text {th }}$ Para 10.2.3, Page no. 183)
189. (1) (NCERT $12^{\text {th }}$ Page no. $229,1^{\text {st }}$ line)
190. (3) (NCERT $12^{\text {th }}$ page no. 63, STI)
191. (2) (NCERT $12^{\text {th }}$ page no 47, Last para)
192. (2) (NCERT $12^{\text {th }}$ Page No.- 155 - AIDS)
193. (1) (NCERT 11 ${ }^{\text {th }}$ Exemplar)
194. (1) (NCERT 11 ${ }^{\text {th }}$ Page No. 297 and 298-19.6 (micturitions)
195. (1) (NCERT $11^{\text {th }}$ Page No. 50, last 4th line of phylum cnidaria)
196. (1) (NCERT $11^{\text {th }}$ P.No. $307,1^{\text {st }}$ para, Fig 20.5 \& Last Para)
197. (3) (NCERT 12 ${ }^{\text {th }}$ Para 10.2.3, Page no. 183)
198. (1) (NCERT 11 ${ }^{\text {th }}$ P.No.321, Forebrain , Hindbrain para and P.No 317 last para)
199. (1) (NCERT $12^{\text {th }}$ P.NO: 199: Fig:11.4 : Description: P.No.213: Biological Products ,212: Molecular Diagnosis)
200. (3) (NCERT $11^{\text {th }}$ Page No. 340, 4th line of 2 nd paragraph)
