S ANSWER KEY \& SOLUTION KEY FINAL ROUND - 15 (PCB) Dt.24.04.2024

PHYSICS

SECTION - A (35 Questions)

1. (2) Given radius vector, $\vec{r}=2 \hat{i}+\hat{j}+\hat{k}$

Linear momentum, $\vec{p}=2 \hat{i}-3 \hat{j}+\hat{k}$
As angular momentum, $\vec{L}=\vec{r} \times \vec{p}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & 1 \\ 2 & -3 & 1\end{array}\right|$
$=\hat{i}(1-(-3))-\hat{j}(2-2)+\hat{k}(-6-2)=4 \hat{i}-8 \hat{j}$
02. (2) Compare $v=16 \sqrt{x}$ with $v=\sqrt{2 a x}$
$\Rightarrow 16=\sqrt{2 a}$ or $256=2 a$ or $a=128 \mathrm{~m} / \mathrm{s}^{2}$
03. (1)
04. (1) As $\left(V_{B}-V_{A}\right)=\frac{W_{A B}}{q}=\int_{A}^{B} \vec{E} \cdot \overrightarrow{d \ell}$
$=k q\left(\frac{1}{r_{A}}-\frac{1}{r_{B}}\right)$
Which depends on the initial and final position.
05. (1) $E_{P}=0$
$\Rightarrow \frac{4}{x^{2}}=\frac{9}{(20-x)^{2}} \Rightarrow \frac{20-x}{x}=\frac{3}{2}$
$\Rightarrow 40-2 x=3 x \Rightarrow x=8 \mathrm{~cm}$
06. (1) Resistance $\propto \frac{1}{\text { Power }}$. Thus, 40 W bulb has a high resistance, because of which there will be more potential drop across 40 W bulb. Thus 40 W bulb will glow brighter.
07. (1) As revolving charge is equivalent to a current loop, so electric current corresponds to the revolution of electron is $\mathrm{I}=q f=q \times \frac{\omega}{2 \pi}$

But $\omega=\frac{v}{R}$, where R is radius of circle and v is uniform speed of charged particle.

Therefore, $I=\frac{q v}{2 \pi R}$

Now, magnetic moment associated with charged particle is given by
$\mu=I A=I \times \pi R^{2}$
or $\mu=\frac{q v}{2 \pi R} \times \pi R^{2}=\frac{1}{2} q v R$
08. (4) Here, $M=4 \pi \mathrm{Am}^{2}$

If l is the length of wires then its pole strength

$$
=\frac{M}{l}=\frac{4 \pi}{l} . \mathrm{Am} .
$$

When wire is bent in the form of semicircle of radius r, then $l=\pi r, r=l / \pi$
New magnetic moment, $M^{\prime}=$ pole strength $\times 2 r$ $=\frac{4 \pi}{l} \times \frac{2 l}{\pi}=8 \mathrm{Am}^{2}$.
09. (1) The correct graph of B.E./N is
10. (3) Energy density =

$\frac{1}{2} \varepsilon_{0} E^{2}=\frac{\text { Energy }}{\text { Volume }}=\left[\frac{M L^{2} T^{-2}}{L^{3}}\right]=\left[M L^{-1} T^{-2}\right]$
11. (1) $\lambda=\frac{h}{m v}$

According to Bohr's theory
$m v r_{o}=\frac{h}{2 \pi}(n=1)$
or $\frac{h}{m v}=2 \pi r_{o}\left(r_{\mathrm{o}}=\right.$ radius of first orbit $)$
Hence, $\lambda=\frac{h}{m v}=2 \pi r_{o}=$ circumference of the first orbit.
12. (1)

$i=\frac{14}{4}=3.5 \mathrm{~mA}$
$\mathrm{V}_{\mathrm{L}}=\mathrm{i} \mathrm{R}_{\mathrm{L}}=3.5 \times 2.5 \mathrm{volt}$
$=8.75$ volt
13. (3) $V_{1}=V_{0}, V_{2}=8 V_{0}, P_{1}=(H+h) m$ of water $P_{1}=H$
$P_{1} V_{1}=P_{2} V_{2}$
$(H+h) V_{0}=H .8 V_{0}$
$h=7 H$.
14. (2) Equation of SHM is $3 \frac{d^{2} x}{d t^{2}}=-48 x$
or $\frac{d^{2} x}{d t^{2}}=-\frac{48}{3} x=-16 x$
Comparing it with, $\frac{d^{2} x}{d t^{2}}=-\omega^{2} x$, we get
$\omega^{2}=16$ or $\omega=4$ or $\frac{2 \pi}{T}=4$ or $T=\frac{2 \pi}{4}=\frac{\pi}{2} s$.
15. (4) The given equation is
$y(x, \mathrm{t})=0.005 \cos (\alpha x-\beta t)$
Compare it with the standard form of equation
$y(x, t)=A \cos (k x-\omega t)$
$k=\alpha=\frac{2 \pi}{0.08}=25.00 \pi^{-1}$
$\beta=\omega=\frac{2 \pi}{T}=\frac{2 \pi}{2.0}=\pi \mathrm{rad}$
16. (2) In longitudinal waves, particles of the medium vibrate along the wave propagation. In transverse waves, particles of the medium vibrate perpendicular to the wave propagation.
In beats, two progressive waves of slightly different frequency superpose in the same direction.
In stationary waves, two progressive waves of same frequency superpose in the opposite directions.
17. (1) At Brewster's angle reflected light is completely polarised \& refracted light is partly polarised.
18. (3) As reflected light is completely polarized, therefore, $i_{p}=60^{\circ}$.
$\mu=\tan i_{\mathrm{p}}=\tan 60^{\circ}=\sqrt{3}$
As $\mu=\frac{c}{v}=\sqrt{3}$
$\therefore v=\frac{c}{\sqrt{3}}=\frac{3 \times 10^{8}}{\sqrt{3}}=\sqrt{3} \times 10^{8} \mathrm{~m} / \mathrm{s}$
19.
(4) $U=\frac{1}{2} C V^{2}=\frac{1}{2} \frac{\varepsilon_{0} A}{d} V^{2}$
$=\frac{1}{2} \times \frac{8.85 \times 10^{-12} \times\left(100 \times 10^{-4}\right)(200)^{2}}{2.5 \times 10^{-3}}=7.08 \times 10^{-7} \mathrm{~J}$
20. (4) Two coils carry current in opposite direction, hence net magnetic field at centre will be difference of the two fields.
i.e. $B_{n e t}=\frac{\mu_{0}}{4 \pi} \cdot 2 \pi N\left[\frac{i_{1}}{r_{1}}-\frac{i_{2}}{r_{2}}\right]$

$$
=\frac{10 \mu_{0}}{2}\left[\frac{0.2}{0.2}-\frac{0.3}{0.4}\right]=\frac{5}{4} \mu_{0}
$$

21. (2) The magnitude of electric field vector varies periodically with time as polarized light is a form of electromagnetic wave.
22. (1) $E=8 \sin \omega t+6 \sin \omega t$
$\Rightarrow E_{\text {peak }}=\sqrt{8^{2}+6^{2}}=10 \mathrm{~V}$
$E_{\mathrm{rms}}=\frac{10}{\sqrt{2}}=5 \sqrt{2} \mathrm{~V}$
23. (4) Kirchhoff's law of radiation states that the ratio of emissive power to absorptive power is same for all surfaces at the same temperature and is equal to the emissive power of a perfectly black body at that temperature.
24. (3) $h_{1}=0+\frac{1}{2} \times 10 \times 60^{2}=18 \mathrm{~km}$
$v_{1}=0+10 \times 60=600 \mathrm{~m} / \mathrm{s}$
$h_{1}=\frac{v_{1}^{2}-0}{2 g}=\frac{600^{2}}{2 \times 9.8}=18.4 \mathrm{~km}$
$h=h_{1}+h_{2}=36.4 \mathrm{~km}$
25. (3) When two holes are made in the tin, air keeps on entering through the other hole. Due to this the pressure inside the tin does not become less than atmospheric pressure which happens only when one hole is made.
Hence, the correct answer is option (3)
26. (3) $Y=\overline{\bar{A}} \cdot \overline{\bar{B}}=\overline{\bar{A}}+\overline{\bar{B}}=A+B$ (De-Morgan's law)
27. (3) Comparing $y=4 a x^{2}+c \Rightarrow$

28. (3) $E_{n}=-\frac{13.6}{n^{2}} \Rightarrow E_{2}=-\frac{13.6}{2^{2}}=-3.4 \mathrm{eV}$.
29. (1) Here, $M=$?, $d \phi=2 \times 10^{-2} W b, d I=0.01 \mathrm{~A}$

As $\phi=M I$
$\therefore M=\frac{\phi}{I}=\frac{d \phi}{d t}=\frac{2 \times 10^{-2}}{0.01}=2 \mathrm{H}$.
30. (2) $\vec{F}_{1}=m a \hat{i} \Rightarrow 60 \hat{i}$
$\vec{F}_{2}=N=m a \hat{j} \Rightarrow 600 \hat{j}$
$\left|\vec{F}_{n e t}\right|=\sqrt{F_{1}^{2}+F_{2}^{2}}=\sqrt{60^{2}+600^{2}}=603 \mathrm{~N}$
31. (1) Potential energy in spring $=\frac{1}{2} k x^{2}$

Now $\frac{1}{2} k(2)^{2}=U \& \frac{1}{2} k(8)^{2}=U^{\prime}($ say $)$
$\Rightarrow U^{\prime}=\frac{64}{4} U=16 U$
Thus, option (1) is correct.
32. (3) For equilibrium $F=0[\because$ means slope of $U v s$ x curve]
As $F=-\frac{d U}{d x}$
33. (2) Tension at B is maximum

$$
T=\text { weight }+\frac{m v^{2}}{R}
$$

So, the string breaks at point B .
34. (1) Exact number \& Not measure value both have infinite significat figures.
35. (4)

$3 \times 0=1 \times 80-2 \mathrm{v}$
$\Rightarrow \mathrm{v}=40 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
K_{f} & =\frac{1}{2} \times 1 \times(80)^{2}+\frac{1}{2} \times 2 \times(40)^{2} \\
& =4800 \mathrm{~J}=4.8 \mathrm{~kJ}
\end{aligned}
$$

SECTION -B (Attempt Any 10 Questions)
36. (1) Let r be radius of each small drop and R be radius of bigger drop
As the volume remains constant
$\therefore \frac{4}{3} \pi R^{3}=n \times \frac{4}{3} \pi r^{3}$
$R=n^{1 / 3} r$
Capacitance of each small drop, $C=4 \pi \varepsilon_{0} r$
Capacitance of bigger drop,
$C^{\prime}=4 \pi \varepsilon_{0} R=4 \pi \varepsilon_{0} R=4 \pi \varepsilon_{0} n^{1 / 3} r=n^{1 / 3} C$
Charge on each small drop, $Q=C V$
Charge on bigger drop, $Q^{\prime}=n Q$
Potential of bigger drop,
$V^{\prime}=\frac{Q^{\prime}}{C^{\prime}}=\frac{n Q}{n^{1 / 3} C}=n^{2 / 3} V$
37. (4) $U_{h}=-\frac{G M m}{R+h}$ for $h=2 R$,
$U_{h}=-\frac{G M m}{3 R}$
Kinetic energy of the satellite moving with velocity
v at a distance $h=2 R$ from the surface of earth is
$K_{h}=\frac{1}{2} m \mathrm{v}^{2}=\frac{G M m}{2 r} \quad\left(\because \frac{m \mathrm{v}^{2}}{r}=\frac{G M m}{r^{2}}\right)$
$=\frac{G M m}{2(R+h)}=\frac{G M m}{2(R+2 R)}=\frac{G M m}{6 R}$
$E_{h}=U_{h}+K_{h}=-\frac{G M m}{3 R}+\frac{G M m}{6 R}=-\frac{G M m}{6 R}$
Since total energy remains conserved,
$K_{R}+U_{R}=K_{h}+U_{h}$
$\Rightarrow K_{R}-\frac{G M m}{R}=-\frac{G M m}{6 R}$
$\Rightarrow K_{R}=\frac{G M m}{R}-\frac{G M m}{6 R}=\frac{5}{6} \frac{G M m}{R}$.
38. (2) $T \cos 37^{0}=\mu\left(100 g-T \sin 37^{0}\right)$
$\frac{4 T}{5}=\frac{1}{3}\left(100 g-T \times \frac{3}{5}\right) \Rightarrow T=\frac{100 g}{3}$
$m_{A} a=T-m_{A} g$
$25 a=\frac{100 g}{3}-25 g \quad \Rightarrow a=\frac{g}{3}$
39. (2) $I=\left(P_{r}\right) c=(u) c=\left[\epsilon_{0} E_{r m s}^{2}\right] c$
$=\left[\frac{1}{2} \epsilon_{0} E_{0}^{2}\right] c$
$=\frac{1}{2} \times 8.85 \times 10^{-12} \times(200)^{2} \times 3 \times 10^{8}$
$=53.1 \mathrm{Wm}^{-2}$
40. (2)

$2 v_{0}=\frac{2 v_{0}}{4}+m v \Rightarrow m v=\frac{3 v_{0}}{2}$
$e=1=\frac{v-v_{0} / 4}{v_{0}-0}$
$\frac{v_{0}}{4}+v_{0}=v+0 \Rightarrow v=\frac{5 v_{0}}{4}$
$m v=\frac{3 v_{0}}{4} \Rightarrow m \times \frac{5 v_{0}}{4}=\frac{3 v_{0}}{2} \quad \therefore m=1.2 \mathrm{~kg}$.
41. (3) For no deviation, the mean deviation for both the prism must be same.
$D_{m_{1}}=D_{m_{2}}$
or $\left(\mu_{1}-1\right) A_{1}=\left(\mu_{2}-1\right) A_{2}$

$$
A_{2}=\frac{\left(\mu_{1}-1\right)}{\left(\mu_{2}-1\right)} A_{1}=\frac{(1.54-1)}{(1.72-1)} \times 4^{\circ}=3^{\circ} .
$$

42. (1)

Given, Mass of the ball $=M$, Density of ball $=d$,
Density of glycerine $=\frac{d}{2}$
Buoyancy force is $F_{B}=V_{s} \rho_{\ell} g=V \frac{d}{2} g$ and
Force of gravity is $F_{g}=M g=v d g$
For constant velocity, $F_{\text {net }}=0, \therefore F_{B}+F_{v}=M g$
$\therefore F_{v}=M g-F_{B}=V d g-\frac{V d g}{2}=\frac{M g}{2}$
Hence, the correct option (1)
43. (1) During change of state, $\Delta T=0$
$\therefore c=\frac{\Delta Q}{m \Delta T}=\infty$.
44. (4) Here, $T=m\left(g+a_{0}\right)$

$$
=10(10+2)=120 \mathrm{~N}
$$

\therefore Stress $=\frac{T}{A}=\frac{120}{2 \times 10^{-4}}$

$$
=60 \times 10^{4} \mathrm{~N} / \mathrm{m}^{2}
$$

$\therefore \mathrm{Y}=\frac{\text { Stress }}{\text { Strain }}$

\therefore Strain $=\frac{\text { Stress }}{Y}=\frac{60 \times 10^{4}}{2 \times 10^{11}}=3 \times 10^{-6}$.
45. (1) Total kinetic energy of the ring when it rolls without slipping,
$K_{\text {ring }}=K_{T}+K_{R}=\frac{1}{2} m v^{2}+\frac{1}{2} I, \omega^{2}$
$=\frac{1}{2} m v^{2}+\frac{1}{2} m r^{2} \times \frac{v^{2}}{r^{2}}=m v^{2}$
$\left(\because I_{r}=m r^{2}\right.$ and $\left.\omega=\frac{v}{r}\right)$
But $\mathrm{K}_{\text {ring }}=4 \mathrm{~J}$ (given) $\therefore m v^{2}=4 \mathrm{~J}$
Similarly, $K_{\mathrm{disc}}=\frac{1}{2} m v^{2}+\frac{1}{2} I_{d} \omega^{2}$

$$
\begin{aligned}
& =\frac{1}{2} m v^{2}+\frac{1}{2} \times \frac{m r^{2}}{2} \times \frac{v^{2}}{r^{2}} \quad\left(\because I_{d}=\frac{m r^{2}}{2}\right) \\
& =\frac{3}{4} m v^{2}=\frac{3}{4} \times 4 \mathrm{~J}=3 \mathrm{~J} \\
& \quad(\mathrm{Using}(\mathrm{i}))
\end{aligned}
$$

46.

(3) $P f=\frac{R}{\sqrt{R^{2}+X^{2}}}=\frac{1}{\sqrt{2}}$
$\Rightarrow \frac{R^{2}}{R^{2}+X^{2}}=\frac{1}{2} \Rightarrow R=X$
As frequency is doubled $\therefore X^{\prime}=2 X$

$$
P f^{\prime}=\frac{R}{\sqrt{R^{2}+\left(X^{\prime}\right)^{2}}}=\frac{X}{\sqrt{X^{2}+(2 X)^{2}}}=\frac{1}{\sqrt{5}}
$$

47. (1) Slope of line passing gas, heat is given out by the gas Slope of $B:\left(\frac{P}{T}\right)_{B}=\frac{n R}{V}=\frac{\left(3 m / M_{0}\right) R}{V}$
Slope of $A:\left(\frac{P}{T}\right)_{A}=\frac{n^{\prime} R}{V}=\frac{\left(m / M_{0}\right) R}{V}$ $\frac{(P / T)_{B}}{(P / T)_{A}}=\frac{3 m}{m}=\frac{3}{1}$.
48. (4) Let k^{\prime} be the of spring constant of each part of spring. The original spring spring constant k can be taken as a combination of 4 springs in series each of spring constant k^{\prime}. So
$\frac{1}{k}=\frac{1}{k^{\prime}}+\frac{1}{k^{\prime}}+\frac{1}{k^{\prime}}+\frac{1}{k^{\prime}}=\frac{4}{k^{\prime}}$ or $k^{\prime}=4 k$
Time period, $T=2 \pi \sqrt{\frac{m}{k}}$
and $T^{\prime}=2 \pi \sqrt{\frac{m}{k^{\prime}}}=2 \pi \sqrt{\frac{m}{4 k}}=2 \pi \sqrt{\frac{m}{k}} \times \frac{1}{2}=\frac{T}{2}$.
49. (2) For characteristic X-rays, $\frac{1}{\lambda} \propto\left(Z_{\text {eff }}\right)^{2}$

So as atomic number increases, wavelength decreases, so option (1) is correct.
For continuous X-rays, cut-off wavelength is given by, $\lambda_{o}=\frac{h c}{e V}$ which is independent of atomic number of target material. so (2) is wrong. Option (3) is the standard correct statement and option (4) could be clearly understood by $\lambda_{o}=\frac{h c}{e V}$.
50. (4) Att $=\infty$, the equivalent circuit is

$$
I=\frac{\varepsilon}{R_{3}+\frac{R_{1} R_{2}}{R_{1}+R_{2}}}=\frac{10}{1+\frac{(2)(2)}{2+2}}=\frac{10}{1+1}=5 \mathrm{~A}
$$

Also, $I_{R_{1}} R_{1}=I_{R_{2}} R_{2} \Rightarrow \frac{I_{R_{1}}}{I_{R_{2}}}=\frac{R_{2}}{R_{1}}=$ constant

CHEMISTRY

SECTION - A (35 Questions)

51. (1) As we move down the group from O to Te , the size of the central atom goes on increasing and its electronegativity goes on decreasing. Consequently, the position of bond pairs of electrons shifts more and more away from the central atom in moving from $\mathrm{H}_{2} \mathrm{O}$ to $\mathrm{H}_{2} \mathrm{Te}$, For example, the bond pair in $\mathrm{O}-\mathrm{H}$ bond is closer to oxygen than the bond pair in S-H bond. As a result, the force of repulsion between bonded pairs of electrons in $\mathrm{H}_{2} \mathrm{O}$ is more than in $\mathrm{H}_{2} \mathrm{~S}$. In general, the force of repulsion between the bonded pairs of electrons decreases as we move from $\mathrm{H}_{2} \mathrm{O}$ to $\mathrm{H}_{2} \mathrm{Te}$ and therefore, the bond angle decreases in the same order as:

$$
\mathrm{H}_{2} \mathrm{O}>\mathrm{H}_{2} \mathrm{~S}>\mathrm{H}_{2} \mathrm{Se}>\mathrm{H}_{2} \mathrm{Te}
$$

Bond angle: $104.5^{\circ} 92.1^{\circ} 91^{\circ} 90^{\circ}$
52. (4)

trans pent-2-ene
$\mu \neq 0$

cis-hex-3-ene
$\mu \neq 0$
53. (4) A-iii, B-i, C-ii, D-iv
54. (2) $\mathrm{CH}_{4(\mathrm{~g})} \rightarrow \mathrm{C}_{(\mathrm{g})}+4 \mathrm{H}_{(\mathrm{g})}$
55. (3) In case of dilute solution of acids, $\left[\mathrm{H}^{+}\right]$of water cannot be neglected or dilute acidic solution cannot have pH in basic range i.e., >7.
56. (3) Assertion is false but Reason is true.

The correct form of Assertion is:
MnO is basic whereas $\mathrm{Mn}_{2} \mathrm{O}_{7}$ is acidic.
57. (2) Statement-1 is true but Statement-2 is false. The correct form of R is:
Ethylenediamine is a strong field ligand and form stable complexes.
58. (4)

Element	\%	At. mass	Relative number of atoms	Simplest Ratio
Xe	53.5	131	0.408	1
F	46.5	19	2.44	6

\therefore The empirical formula is XeF_{6}.
\therefore Oxidation state of Xe is +6 .
59. (4) $(\mathrm{meq})_{\text {FeSO }_{4}}=\frac{1}{10} \times 1 \times 10=1$
$(\mathrm{meq})_{\mathrm{KMnO}_{4}}=0.02 \times 5 \times 10=1$
60. (1) Only HBr-follows Anti Markownikoffs rule.
61. (3) A is false but R is true. The correct form of A is, Isopropyl carbocation formed in $\mathrm{S}_{\mathrm{N}} 1$ reaction undergoes rearrangement.
62. (3) Dissolution of a gas in a liquid is an exothermic process. Gas + liquid solvent \rightleftharpoons solution + heat Hence, reaction is favoured at low temperature.
63. (2) The complex is of the type [Mabcd]
$\mathrm{M}=$ metal
$\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}=$ Monodentate ligands.

3 geometrical isomers
64. (3) Statement-1 is false, Statement-2 is true
65. (3) $\mathrm{CIH}_{2} \mathrm{C}-\mathrm{CH}_{2} \mathrm{Cl}$ is ethylene chloride (ethylene dichloride) which is example of dihalogen derivative.
66. (2) 31.75 g copper i.e. 0.5 mole of Cu gets deposited at cathode on passing 96500 coulomb charge.
67. (3) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(\mathrm{OH}) \mathrm{CN},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}(\mathrm{OH}) \mathrm{COOH}$
68. (2) As a very high temperature is produced in Bredig's arc method, It can be used only for those metals, with does not react with water at that high temperature.
Pt, Ag and Au does not react with water but Fe can.
69. (3) +3 and +4 oxidation states are shown by Ce in aqueous solution.
70. (2) II $>$ III $>$ I
71. (4) A-III, B-I, C-II, D-IV
72. (2) Among the given statements, statement A, C and D are correct whereas B and E are incorrect. Their correct form is :
A spontaneous process is a process which take place by itself.
Spontaneous reaction occurs at constant temperature and pressure, when $\Delta \mathrm{H}<0$ and $\Delta \mathrm{S}>0$.
73. (4) For nitrogen, formal charge $=5-\frac{1}{2}(8)=+1$.

For oxygen, formal charge $=6-6-\frac{1}{2}(2)=-1$.
74. (3) Configuration of C_{2} molecule is
$\sigma 1 \mathrm{~s}^{2} \sigma^{*} 1 \mathrm{~s}^{2} \sigma 2 \mathrm{~s}^{2} \sigma^{*} 2 \mathrm{~s}^{2} \pi 2 \mathrm{p}_{\mathrm{x}}^{2} \pi 2 \mathrm{p}_{\mathrm{y}}^{2}$.
75. (3) The decreasing order of basic character

\Rightarrow Electron withdrawing group decreases basic strength at ortho \& para position NO_{2} show -M $\&-\mathrm{I} \&$ at meta position $\mathrm{NO}_{2}-\mathrm{I}$ only.
76. (2) Phosphorus
77. (4) All of these
78. (2) En for any one electron species $=\frac{E_{1} \times Z^{2}}{n^{2}}$ where E_{1} is ground state energy of H -atom.
For $\mathrm{He}^{+}, \mathrm{E}_{\mathrm{n}}=\frac{\mathrm{E}_{1} \times 2^{2}}{\mathrm{n}^{2}}$
As given, $\frac{E_{1} \times 2^{2}}{n^{2}}=E_{1}$
$\therefore \mathrm{n}=2$
Thus $2^{\text {nd }}$ energy level of He^{+}has energy equal to ground state energy of H -atom.
79. (2) In the compound $\mathrm{M}-\mathrm{O}-\mathrm{H}$, if IE or E.N. of M is low, the compound will act as a base and if the IE or E.N. of M is high, the compound will behave as an acid. Therefore, $\mathrm{M}-\mathrm{O}-\mathrm{H}$ will act as an acid as E.N. of M is high (3.5) and $\mathrm{M}^{\prime}-\mathrm{O}-\mathrm{H}$ will act as a base as E.N. of M^{\prime} is low (1.72).
80. (2) $\mathrm{NH}_{3},\left[\mathrm{PtCl}_{4}\right]^{2-}, \mathrm{PCl}_{5}$ and BCl_{3} have $\mathrm{sp}^{3}, \mathrm{dsp}^{2}$, $\mathrm{sp}^{3} \mathrm{~d}$ and sp^{2} hybridisation respectively.
81. (2) $\mathbf{H C H O}+\mathrm{KOH} \xrightarrow{\text { cannizzaro reaction }}$

$$
\mathrm{CH}_{3} \mathrm{OH}+\mathrm{HCO}_{2} \mathrm{~K}
$$

82. (3)

83. (3) Number of orbitals in a shell $=n^{2}$.
84. (1) Slope of adiabatic curve is greater than isothermal curve.
85. (2) Stability of +2 oxidation state in carbon family increases with increase in atomic number due to inert pair effect.

SECTION - B (Attempt Any 10 Questions)

86. (3) $t_{3 / 4}=\frac{2.303}{k} \log \frac{a}{1 / 4 a}=\frac{2.303}{k} \log 4$
$\mathrm{t}_{1 / 2}=\frac{2.303}{\mathrm{k}} \log \frac{\mathrm{a}}{1 / 2 \mathrm{a}}=\frac{2.303}{\mathrm{k}} \log 2$
$\frac{t_{3 / 4}}{t_{1 / 2}}=\frac{\log 4}{\log 2}=2 \Rightarrow t_{1 / 2}=\frac{t_{3 / 4}}{2}=\frac{32 \mathrm{~min}}{2}=16 \mathrm{~min}$
87. (1) Strong field ligands cause greater splitting which leads to pairing of electrons.
dfblock
88. (1) $(\mathbf{a} \rightarrow \mathbf{s})$ Definition of 1° structure of protein $(\mathbf{b} \rightarrow \mathbf{p})$ Definition of structure of protein $(\mathbf{c} \rightarrow \mathbf{q})$ Definition of structure of protein $(\mathbf{d} \rightarrow \mathbf{r})$ Definition of structure of protein
89. (2)

Oxidation states of three bromines are $+6,+4,+6$.
90. (4) The correct match is A-IV, B-I, C-II, D-III.
91. (2) HNO_{2} reacts to give an alcohol means the compound is primary amine.
$\mathrm{C}_{5} \mathrm{H}_{13} \mathrm{~N}$ means $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{NH}_{2}$ (primary amine)
Optically active alcohol means $\mathrm{C}_{5} \mathrm{H}_{11}$ segment contain a chiral carbon.

92. (1) ${ }_{\text {Initial moles }} \mathrm{N}_{2}+\underset{6}{3} \quad 3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$

Final moles $2-2 \times \frac{50}{100}$

$$
=2-1 \quad=6-3 \times 1=2 \times 1
$$

$\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}=\frac{(2)^{2}}{(1) \times(3)^{3}}=\frac{4}{27}$
93. (1) More electronegative elements form more strong acid. Electronegativity of nitrogen and chlorine is almost same still HClO_{4} is stronger acid than HNO_{3} becuase of higher oxidation state of Cl in HClO_{4}. $\mathrm{H}_{2} \mathrm{CO}_{3}$ is a stronger acid than $\mathrm{B}(\mathrm{OH})_{3}$ but weaker than HNO_{3}.
94. (1)

95. (1) Mass of one molecule of water

$$
=\frac{18}{6.023 \times 10^{23}} \approx 3 \times 10^{-23} \mathrm{~g}
$$

96. (3) The incorrect reaction of methane is

$$
\mathrm{CH}_{4}+\mathrm{O}_{2} \longrightarrow \mathrm{HCOOH}+2 \mathrm{H}_{2} \mathrm{O}(l)
$$

97. (1) A-2, B-1, C-3, D-4
98. (4)

Hence the correct name is (4)
99. (3) A is false but R is true.

The correct from of A is :
Since, $2 p_{x}$ and $2 p_{y}$ orbitals are degenerate orbitals, hence, there is no possibility of transition of electron.
100. (1) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$

BOTANY

Section - A (35 Questions)

101. (4) (NCERT $11^{\text {th }}$ PK Bry. to Angio. concept based)
102. (4) (NCERT $12^{\text {th }}$ Page no. 31 to 41 concept based.)
103. (2) (NCERT 11 ${ }^{\text {th }}$ Para10.4.1, Page no. 168)
104. (2) (NCERT $11^{\text {th }} 8.5 .1$ Page no. 132)
105. (4) (NCERT 11 ${ }^{\text {th }}$ Para 8.5.10, Page no.139/ bot.)
106. (4) (NCERT 11 ${ }^{\text {th }}$, Page No.71: sub-topic 5.3.3)
107. (1)(NCERT $11^{\text {th }}$, Page no-11, Table- 1.1, Concept based)
108. (1) (NCERT 12 ${ }^{\text {th }}$ Page No. 80 Structure of Polynucleotide chain)
109. (2) (NCERT 12 ${ }^{\text {th }}$ Pg 88, Para 6, Line 1, Pg. 89 , para 2, Line 11-12)
110. (1) (NCERT 12 ${ }^{\text {th }}$ Pg. 115, Para-2, Line 10)
111. (4) (NCERT 11 ${ }^{\text {th }}$, Page no- 19, Paragraph2.1.1, Line no- 1-8)
112. (2) (NCERT $12^{\text {th }}, \operatorname{Pg} 85$ - polygenic inh- line 11, Pg 86- Para 1- last lines, Pg 87- Sex Determination in Honey Bee- Last line)
113. (3) (NCERT $12^{\text {th }}$ Pg 111, Para 3, Line 4)
114. (2) (NCERT 12 ${ }^{\text {th }} \operatorname{Pg} 116$, Para 2, Line 6,7,8)
115. (2) (NCERT 11 ${ }^{\text {th }}$, para 10.2.5, page no. 166)
116. (1) (NCERT 11 ${ }^{\text {th }}$, Page No.69: sub-topic 5.2.1)
117. (3) (NCERT $12^{\text {th }}$ Page no. 249 fig. 14.4)
118. (2) (NCERT 11 ${ }^{\text {th }}$, Page No. 78, 79 and 80)
119. (2) (NCERT $11^{\text {th }}$ page no. 222, $13.10 .1,10^{\text {th }}$ line)
120. (1) (NCERT $11^{\text {th }}$ page no. $216,13.7 .2,1-4^{\text {th }}$ and $5^{\text {th }}$ line)
121. (1) (NCERT $11^{\text {th }}$, Page no- 21, Paragraph2.2.3, Line no- 1,2)
122. (4) (NCERT 12 ${ }^{\text {th }}$, Page no- 34, Paragraph-2.3, Conceptual)
123. (3) (NCERT $12^{\text {th }} \mathrm{Pg}$. 92, Figure 5.16, Down's syndrome)
124. (1) (NCERT $12^{\text {th }}$ Pg 106, The Machinery and the Enzymes , para 2, Line 7)
125. (2) (NCERT $11^{\text {th }}$ Para 10.4.1, Page no. 168)
126. (4) (NCERT 12 ${ }^{\text {th }}$, Page no- 34, Paragraph-2.3, Line no- 2-7)
127. (4) (NCERT $12^{\text {th }}$, Page no- $24,1^{\text {st }}$ paragraph, Line no- 2-4)
128. (3) (NCERT $11^{\text {th }}$ Page No. 78 : sub-topic 5.8)
129. (3) (NCERT 12 ${ }^{\text {th }}$ Pg 90-Hemophilia)
130. (3) (NCERT 12 ${ }^{\text {th }}$, Pg 83 , Para 4, Line $16,17,18$)
131. (4) [NCERT 11 ${ }^{\text {th }}$, Page no. 87 (Subpoint 6.1.2.2)
132. (3) [NCERT $11^{\text {th }}$, Page no. 89, Second paragraph]
133. (1) [NCERT $11^{\text {th }}$ Page 248, First paragraph (Line no. 01-02)]
134. (1) (NCERT $11^{\text {th }}$ Pg.226, $4^{\text {th }}$ Para, $2^{\text {nd }}$ line)
135. (3) (NCERT $11^{\text {th }}$ Pg.233, Fig 14.4)

SECTION - B (Attempt Any 10 Questions)

136. (4) [NCERT $11^{\text {th }}$, Page no. 93, Point no. 6.3.4]
137. (1) [NCERT 11 ${ }^{\text {th }}$, Page 250, Point 15.4.3.4 (First paragraph)]
138. (1) (NCERT $\left.11^{\text {th }} \mathrm{Pg} .235,14.6\right)$
139. (4) (NCERT 11 ${ }^{\text {th }}$ Page no.36,3.2.2 $2^{\text {nd }}$ line concept.)
140. (2) (NCERT $11^{\text {th }}$ Page no. $381^{\text {st }}$ para, concept)
141. (4) (NCERT 12 ${ }^{\text {th }}$ Page no. $244,14.3,2^{\text {nd }}$ para $4^{\text {th }}$ line)
142. (2) (NCERT $12^{\text {th }} \operatorname{Pg} 77$, based on Table 5.2)
143. (1) (NCERT 12 ${ }^{\text {th } P g ~ 110, ~ p a r a ~ 2, ~ L i n e ~} 4,5,6$)
144. (3) (NCERT 11 ${ }^{\text {th }}$ Para 8.5.4, Page no.133, 135)
145. (2) (NCERT 11 ${ }^{\text {th }}$, Page no- 19, Paragraph2.1.2, Line no-13-18)
146. (3) (NCERT $11^{\text {th }}$ Para 8.5.3, Page no.133,134,135)
147. (2) (NCERT $11^{\text {th }}$ page no. 212, 13.6.1, $1^{\text {ST }}$ paragraph)
148. (3) (NCERT 11 th , Page no-10, Paragraph1.3.4, Line no-5,6)
149. (1) (NCERT 11 ${ }^{\text {th }}$, Biological classification, Based on whole chapter knowledge)
150. (2) (NCERT 12 ${ }^{\text {th }}$, Page no- $28,3^{\text {rd }}$ paragraph, Line no-1-3)

ZOOLOGY

Section - A (35 Questions)

151. (1) (NCERT 12 ${ }^{\text {th }}$, p.no62, para1, line 1)
152. (1) (NCERT 12 ${ }^{\text {th }}$, p.no61, para1, line4)
153. (4) (NCERT $11^{\text {th }}, \mathrm{p}$ no 119 , line9)
154. (2) (NCERT based extra)
155. (4) [NCERT $11^{\text {th }}$ No.305, $10^{\text {th }}$ Line]
156. (3) [NCERT $11^{\text {th }}$ P.No.303, Last 2 para \& 304, $1^{\text {st }}$ para]
157. (2) (NCERT 11 ${ }^{\text {th }}$, p no114, line 12)
158. (1) (NCERT based extra)
159. (3) (NCERT Page No - 194 formed elements)
160. (3)(NCERT $11^{\text {th }}$ Page No - 201 - Double circulation)
161. (1) (NCERT concept)
162. (1) [NCERT $12^{\text {th }}$ P.No.211, last para $10^{\text {th }}$ Line]
163. (1) (NCERT 12 ${ }^{\text {th }}$, Page no- 133, $1^{\text {st }}$ Paragraph, Line no-8-11)
164. (3) (NCERT $11^{\text {th }}$, p no104, para3, line3)
165. (2) (NCERT $12^{\text {th }}$ para $10.5 /$ Page no. 186,187)
166. (2) (NCERT 12 ${ }^{\text {th }}$ Para 10.2.3, Page no. 183)
167. (2) (NCERT 12 ${ }^{\text {th }}$, Page no- 134, Last paragraph, Line no-1,2)
168. (3) [NCERT 11 ${ }^{\text {th }}$ P.No.312,Cartilaginous Joint]
169. (3) [NCERT $11^{\text {th }}$ P.No. 320, First para Last line]
170. (4) [NCERT $11^{\text {th }}$ P.No.321, Midbrain]
171. (1) (NCERT 12 ${ }^{\text {th }}$, Evolution Conceptual)
172. (4) (NCERT $11^{\text {th }}$, Page no- 156, Last line)
173. (4) (NCERT 12 ${ }^{\text {th }}$ Page no.233, (i) concept based)
174. (1) (NCERT $11^{\text {th }}$ Page No. 57; Class-Amphibia)
175. (3) (NCERT $11^{\text {th }}$ Page No. 54; Phylum Echinodermata.)
176. (3) (NCERT $11^{\text {th }}$, Page no- $156,1^{\text {st }}$ paragraph, conceptual)
177. (1) [NCERT 12 ${ }^{\text {th }}$ P.No. 204 Last para, 205, First para]
178. (2) [NCERT 12 ${ }^{\text {th }}$ P.No.209, Last para]
179. (2) (NCERT $11^{\text {th }}$ Page No. 290; 2nd paragraph 1st line)
180. (1) (NCERT $11^{\text {th }}$ Page No. 331, last line of 1 st paragraph)
181. (3) (NCERT $11^{\text {th }}$ Conceptual)
182. (2) (NCERT 12 ${ }^{\text {th }}$, p.no47, para2, line 7)
183. (2) (NCERT 12 ${ }^{\text {th }}$, p.no62, para3, line3)
184. (4) (NCERT $12^{\text {th }}$ Page no. 233 (i) concept based)
185. (4) (NCERT $12^{\text {th }}$ Page no. 237 (v) $1^{\text {st }}$ line)

SECTION - B (Attempt Any 10 Questions)

186. (2) (NCERT $12^{\text {th }}$, Page no- 131, Last paragraph, Line no-1-7)
NCERT 12 ${ }^{\text {th }}$, Page no-132, $1^{\text {st }}$ paragraph
187. (3) (NCERT $11^{\text {th }}$, Page no- 158,159 , Paragraph-9.12.5)
188. (3) (NCERT $12^{\text {th }}$ Page no. 234 (ii) $1^{\text {st }}$ para)
189. (2) (NCERT $11^{\text {th }}$ Page No. 292, 2nd paragraph)
190. (3) (NCERT $11^{\text {th }}$ Page No. 57 (Class Amphibia)
191. (3) (NCERT 12 ${ }^{\text {th }}$, p.no50, fig. 3.9)
192. (3) (NCERT 12 ${ }^{\text {th }}$, p.no54, para3)
193. (3) (NCERT $12{ }^{\text {th }} 10.1$ BIOTECHNOLOGICAL APPLICATIONS IN AGRICULTURE)
194. (2) (NCERT $11^{\text {th }}$ Page No - 187 - Respiratory volume \& capacities)
195. (2) [NCERT P.No.212, $2^{\text {nd }}$ and $3^{\text {rd }}$ para]
196. (2) [NCERT $12^{\text {th }}$ P.NO.318, LAST 5 LINES APPLIED]
197. (3) [NCERT $11^{\text {th }}$ P.No. 311 , Pelvic Girdle]
198. (2) (NCERT 12 ${ }^{\text {th }}$ Page No - 159 Cannabinoids)
199. (2) (NCERT $11^{\text {th }}$ Page No. 282)
200. (4) (NCERT $12^{\text {th }}$ Page No - 156 Cancer)
