ANSWER KEY \& SOLUTION KEY FINAL ROUND - 14 (PCB) Dt.23.04.2024

PHYSICS

SECTION - A (35 Questions)

1. (2)

By conservation of momentum
$m(0)=\frac{2 m}{5}(-v \hat{i})+\frac{2 m}{5}(-v \hat{j})+\frac{m}{5} \vec{v}^{\prime}$
$\Rightarrow \vec{v}^{\prime}=2 v \hat{i}+2 v \hat{j}$
$\Rightarrow v^{\prime}=\sqrt{(2 v)^{2}+(2 v)^{2}}=2 \sqrt{2} v$
02. (3) $h=l\left(1-\cos 60^{\circ}\right)=\frac{l}{2}, v^{2}=2 g h=g l$

Now, $T_{\max }=m g+\frac{m v^{2}}{l}$ (at bottom most point)
$\therefore T_{\text {max }}=2 m g=\mu_{s}(4 m g)$
$\therefore \mu_{s}=0.5$
03. (4)
04. (3)
05. (3) The Statement I is correct but the Statement II is incorrect.
The air currents at the top have a larger velocity and thus less pressure at the top than at the bottom. The difference in pressure on the two sides of the wing produces the uplift.
Hence, the correct answer is option (3)
06. (1)
07. (1) Here, $m_{1}=0.20 \mathrm{~kg}=200 \mathrm{~g}$
$\theta_{1}=150^{\circ} \mathrm{C}$
$w=0.025 \mathrm{~kg}=25 \mathrm{~g}$
$m_{2}=V \times d=150 \times 1=150 g, \theta_{2}=27^{\circ} \mathrm{C}$
Final temperature, $\theta=40^{\circ} \mathrm{C}, \mathrm{c}=$?
As heat lost by metal $=$ heat gained by water and calorimeter
$\therefore m_{1} c \Delta \theta_{1}=\left(m_{2}+w\right) \Delta \theta_{2}$
$200 \times c(150-40)=(150+25)(40-27)$
$\therefore c=\frac{175 \times 13}{200 \times 110}=0.1$.
08. (1)
09. (1) The electrostatics shielding is possible by metallic conductor.
10. (1)
11. (2)

Let assume unknown resistance $=\mathrm{R}$
in balancing condition
$\frac{3}{R}=\frac{60}{40} \Rightarrow R=2 \Omega$
Net resistance after shunting on unknown resistance
$\mathrm{R}_{\mathrm{eq}}=\frac{S \times R}{S+R}=\frac{2 \times 2}{2+2}=1 \Omega$
Now in balancing condition
$\frac{3}{1}=\frac{x}{100-x} \Rightarrow x=\frac{300}{4}$
$=75 \mathrm{~cm}$
length changes by $\Rightarrow 75-60=15 \mathrm{~cm}$
12. (1) When the switch S is closed, bulb B_{2} lights up earlier. This is because growth of current in B_{1} is opposed by emf induced across L. As resistance R is same as that of the coil making up L, therefore, finally, both the bulbs acquire equal brightness.
13. (3)
14. (1) From conservation of momentum :
$M V=\frac{h}{\lambda}=h R\left(1-\frac{1}{4}\right) \Rightarrow V=\frac{3}{4} \frac{h R}{M}$.
15. (2) As for first minima
$\sin \theta=\lambda \Rightarrow a \sin 30^{\circ}=600 \times 10^{-9}$
$\Rightarrow a=1200 \times 10^{-9} \mathrm{~m} \Rightarrow a=1.2 \mu \mathrm{~m}$
16. (3)

By dmorgan's theorem $\overline{\bar{A}+\bar{B}}=\overline{\bar{A}} \cdot \overline{\bar{B}} \Rightarrow A \cdot B$
17. (3) Knowledge based question.
18. (1) Distance between the car A and B remains constant.
Let the distance be ' x '
velocity of C w.r.t. A and $\mathrm{B}, v=45+36=81$ km/h

Distance $=81 \times \frac{5}{60}=6.75 \mathrm{~km}$.
19. (1) Amplitude A_{1} and A_{2} are added as vectors. Angle between these vectors is the phase difference ($\left(\beta_{1}-\beta_{2}\right)$ between them.
$\therefore R=\sqrt{A_{1}^{2}+A_{2}^{2}+2 A_{1} \cos \left(\beta_{1}-\beta_{2}\right)}$
20. (3)
21. (2)
$E=\frac{q}{4 \pi \varepsilon_{0} r^{2}} \Rightarrow A r=\frac{q}{4 \pi \epsilon_{0} r^{2}} \Rightarrow q=4 \pi \varepsilon_{0} A r^{3}$
22. (1) Using work energy theorem

$$
\begin{aligned}
W & =\Delta K E=0-\left(\frac{1}{2} m v^{2}+\frac{1}{2} I \omega^{2}\right) \\
W & =0-\frac{1}{2} m v^{2}\left(1+\frac{K^{2}}{R^{2}}\right) \\
& =-\frac{1}{2} \times 50 \times(0.4)^{2}\left(1+\frac{1}{2}\right)=-6 \mathrm{~J}
\end{aligned}
$$

Absolute work $=+6 \mathrm{~J}$

$$
W=-6 \mathrm{~J} \Rightarrow|W|=6 \mathrm{~J}
$$

23. (1) When a metal wire elongates by hanging a load on it, the gravitational potential energy is decreased. Half of lost potential energy stored in form of elastic potential of wire and remaining half in form of heat.
24. (2) $R=R_{0} A^{1 / 3}$
$\therefore \frac{R_{1}}{R_{2}}=\left(\frac{A_{1}}{A_{2}}\right)^{1 / 3}=\left(\frac{27}{125}\right)^{1 / 3}=\frac{3}{5}$
$\therefore R_{2}=\frac{5}{3} \times 3.6=6$ fermi.
25. (2) $V_{\mathrm{rms}}=\sqrt{\frac{(T / 2) V_{0}^{2}+0}{T}}=\frac{V_{0}}{\sqrt{2}}$.
26. (2) Here, $\mathrm{M}=0.005 \mathrm{H}, I=I_{0} \sin \omega t$
$\frac{d I}{d t}=I_{0} \cos \omega t(\omega)$
Max. value of $\frac{d I}{d t}=I_{0}(\omega) \times 1$
Max. value of emf induced in second coil
$e_{0}=M\left(\frac{d I}{d t}\right)_{\max }=0.005 \times I_{0} \omega$
$e_{0}=0.005 \times 10 \times 100 \pi=5 \pi$ volt.
27. (3) Velocity
$v=\omega \sqrt{a^{2}-y^{2}}$ or $v^{2}=\omega^{2}\left(a^{2}-y^{2}\right)$
or $\frac{v^{2}}{\omega^{2}}+y^{2}=a^{2}$
It is an equation of ellipse.
28. (2) Given $V=100 \pm 5$ volts
$l=10 \pm 0.2$ amperes
$R=\frac{V}{l}$
$\frac{R}{R}=\frac{V}{V}+\frac{l}{l}$
$\frac{R}{R}=\frac{5}{100}+\frac{0.2}{10} \Rightarrow \frac{R}{R}=\frac{7}{100}$
$\Rightarrow \%$ error $=\frac{\mathrm{R}}{R} \times 100 \%=7 \%$
29. (3) $P_{\text {avg }}=V_{\text {rms }} \mathrm{I}_{\mathrm{rms}} \cos (\Delta \phi)$
$=\frac{200}{\sqrt{2}} \times \frac{50 \times 10^{-3}}{\sqrt{2}} \times \cos \left(\frac{\pi}{3}\right)$
$=\frac{10^{4}}{2} \times \frac{1}{2} \times 10^{-3}$
$=\frac{10}{4}=2.5 \mathrm{~W}$
30. (4) Error in measuring $25 \mathrm{sec} .=\frac{1}{5} \mathrm{sec} .=0.2 \mathrm{sec}$.
\therefore percentage error $=\frac{0.2}{25} \times 100 \%=0.8 \%$
31. (1)
32. (1)
33. (2) Given, $v=3 x^{2}-2 x$, differentiating v, we get
$\frac{d v}{d t}=(6 x-2) \frac{d x}{d t}=(6 x-2) v$
$\Rightarrow a=(6 x-2)\left(3 x^{2}-2 x\right)$
Now put, $x=2 \mathrm{~m}$
$\Rightarrow a=(6 \times 2-2)\left[3(2)^{2}-2 \times 2\right]=80 \mathrm{~m} / \mathrm{s}^{2}$
34. (3) Let force acting on mass m in equilibrium are
$\vec{F}, \vec{F}_{1}, \vec{F}_{2}, \vec{F}_{3}, \vec{F}_{4}$
$\vec{F}+\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}+\vec{F}_{4}=0$ [equilibrium condition]
$\Rightarrow \vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}+\vec{F}_{4}=-\vec{F}$
After cutting the string with force \vec{F}, the net force on mass m
$\vec{F}_{n e t}=\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}+\vec{F}_{4}$
$\Rightarrow \vec{a}=\frac{\vec{F}_{n e t}}{m}=-\frac{\vec{F}}{m} \quad[$ from (i)]
35. (1) $U_{2}=\left(2 x^{2}+3 y^{2}+3 z\right)$

$$
\begin{aligned}
& \vec{F}=-\left(\frac{\partial U}{\partial x} \hat{i}+\frac{\partial U}{\partial y} \hat{j}+\frac{\partial U}{\partial z} \hat{k}\right) \\
& =-\left(4 x \hat{i}+9 y^{2} \hat{j}+2 \hat{k}\right) \mathrm{N} \\
& \vec{F}_{(1,2,3)}=-(4 \hat{i}+36 \hat{j}+2 \hat{k}) \mathrm{N}
\end{aligned}
$$

SECTION - B (Attempt Any 10 Questions)

36. (3) The magnetic field due to wire placed along x axis will be zero. The point under consideration is semi finite position of the wires placed along y axis and z -axis.
Magnetic field due to wire placed along y-axis,
$\vec{B}_{y}=\frac{\mu_{i} I}{4 \pi r}(\hat{k})$
Magnetic field due to wire placed along z-axis, $\vec{B}_{z}=\frac{\mu I}{4 \pi r}(-\hat{j})$
Hence, net magnetic field, $\vec{B}=\frac{\mu_{0} I}{4 \pi r}(\hat{k}-\hat{j})$
After substituting the values, we get,
$\vec{B}=\frac{\mu_{0}}{8 \pi}(\hat{k}-\hat{j}) \mathrm{T}$
37. (2) $\mu_{\mathrm{r}}=500, \mathrm{I}=1 \mathrm{~A}, n=500$ per metre

Magnetisation, $\mathrm{I}=\chi H=\left(\mu_{r}-1\right) n I$
$(500-1) 500 \times 1$
$\mathrm{I}=2.5 \times 10^{5} \mathrm{Am}^{-1}$
38. (3) Speed of wave from wave equation
$v=-\frac{(\text { coefficient of } t)}{(\text { coefficient of } x)}$
$v=-\frac{1000}{(-3)}=\frac{1000}{3}$
Since speed of wave $\propto \sqrt{T}$
So $\frac{1000}{3}=\sqrt{\frac{273}{T}} \Rightarrow T=4.41^{\circ} \mathrm{C}$
39. (2) If the equation of unknown is
$\mathrm{y}^{\prime}=\mathrm{y}+\mathrm{y}^{\prime}=a \sin ((\omega t-k x)-a \sin (\omega t+k x)$
$=-a[\sin (\omega t+k x)-\sin (\omega t-k x)]$
$-2 a \cos \omega t \sin k x$
At $x=0, y^{\prime \prime}=0$, i.e. a node is formed
40.
(3) $\delta_{\text {water }}=\left({ }^{w} \mu_{g}-1\right) A=\left(\frac{{ }^{a} \mu_{g}}{{ }^{a} \mu_{w}}-1\right) A$

$$
=\left(\frac{9}{8}-1\right) A=\frac{A}{8} .
$$

41. (3)

Zener is in breakdown region.
$I_{3}=\frac{10}{500}=\frac{1}{50}$
$I_{1}=\frac{10}{200}=\frac{1}{20}$
$I_{2}=I_{1}-I_{3}$
$I_{2}=\left(\frac{1}{20}-\frac{1}{50}\right)=\left(\frac{3}{100}\right)=30 \mathrm{~mA}$
42. (4) Intensity of EM wave is given by
$I=\frac{P}{4 \pi R^{2}}=u_{a v} \cdot c=\frac{1}{2} \varepsilon_{0} E_{0}^{2} \times c$
$\Rightarrow E_{0}=\sqrt{\frac{P}{2 \pi R^{2} \varepsilon_{0} c}}$
43. (4) At these points, the resultant field $=0$
44. (1) Here $r_{1}=0.05 \mathrm{~m}, r_{2}=0.06 \mathrm{~m}$
$C=\frac{4 \pi \varepsilon_{0} r_{1} r_{2}}{\left(r_{2}-r_{1}\right)}=\frac{0.05 \times 0.06}{0.01\left(9 \times 10^{9}\right)}=\frac{1}{3} \times 10^{-10} F$
Potential difference between the plates, $V=$ $15,000 \mathrm{~V}$
\therefore Charge on the inner sphere,
$C V=\frac{1}{3} \times 10^{-10} \times 15,000=5 \times 10^{-7} \mathrm{C}$.
45. (1) For the branch containing A, B and C
$R_{e q}=\frac{3 R}{2}$
Current in A: $I_{1}=\frac{E}{R_{e q}}=\frac{2 E}{3 R}$
Current in each of B and C; $I_{1}^{\prime}=\frac{I_{1}}{2}=\frac{E}{3 R}$
for the branch containing D, E, F, G and H;
$R_{e q}=\frac{7 R}{3}$
Current through D and $\mathrm{H}: \mathrm{I}_{2}=\frac{3 E}{7 R}$
Current through each of E, F, and G;
$I_{2}^{\prime}=\frac{I_{2}}{3}=\frac{E}{7 R}$ Since $I_{1}>I_{2}>I_{1}^{\prime}>I_{2}^{\prime}$
$\mathrm{A}>\mathrm{D}=\mathrm{H}>\mathrm{B}=\mathrm{C}>\mathrm{E}=\mathrm{F}=\mathrm{G}$
46. (2) At height r from centre of earth, orbital velocity
$\mathrm{v}=\sqrt{\frac{G M}{r}}$
By principle of energy conservation
KE of $m+\left(-\frac{G M m}{r}\right)=0+0$
$(\because$ At infinity, $\mathrm{PE}=\mathrm{KE}=0)$
or KE of $m=\frac{G M m}{r}=\left(\sqrt{\frac{G M}{r}}\right)^{2} m=m \mathrm{v}^{2}$.
47. (3) There are n_{0} moles in each container initially
$n=\frac{P_{0} V_{0}}{R T_{0}}$
$n_{1}+n_{2}=2 n$
Let final common pressure is P
$\frac{P V_{0}}{2 R T_{0}}+\frac{P V_{0}}{R T_{0}}=\frac{2 P_{0} V_{0}}{R T_{0}}$
$\frac{P}{2}+P=2 P_{0} \Rightarrow P=\frac{4 P_{0}}{3}$
No of moles in container of temperature $2 \mathrm{~T}_{0}$
$=\frac{P V_{0}}{2 R T_{0}}=\frac{4 P_{0}}{3} \times \frac{V_{0}}{2 R T_{0}}=\frac{2}{3} \frac{P_{0} V_{0}}{R T_{0}}$
48. (1) Here, Initial angular speed of the wheel,
$\omega_{0}=1800 \times \frac{2 \pi}{60} \mathrm{rad} \mathrm{s}^{-1}=60 \pi \mathrm{rad} \mathrm{s}^{-1}$
Final angular speed of the wheel,
$\omega=3000 \times \frac{2 \pi}{60} \mathrm{rad} \mathrm{s}^{-1}=100 \pi \mathrm{rad} \mathrm{s}^{-1}$
Time during which this change of speed takes place,
$t=20 \mathrm{~s}$
Let α be angular acceleration of the wheel.
$\therefore \alpha=\frac{\omega-\omega_{0}}{t}=\frac{100 \pi-60 \pi}{20} \mathrm{rad} \mathrm{s}^{-2}=2 \pi \mathrm{rad} \mathrm{s}^{-2}$
49. (3) Given that initially the system is at rest,
i.e., $\vec{V}_{C M}=0$

So $\vec{V}_{C M}=$ constant $=0$
i.e., $\frac{m \vec{v}+M \vec{V}}{m+M}=0$
or $m \vec{v}+M \vec{V}=0[$ as $(\mathrm{m}+\mathrm{M})=$ finite $]$
i.e., $M \vec{V}=-m \vec{v}$

Furthermore, here it is given that ;
$\vec{v}_{\text {rel }}=\vec{v}-\vec{V}$
Putting the value of \vec{v} from eq. (ii) in eq.(i), we get ;
$M \vec{V}=-m\left(\vec{v}_{r e l}+\vec{V}\right)$
or $\vec{V}=-\frac{m \vec{v}_{r e l}}{m+M}$
Thus, it is clear that the direction of motion of balloon is opposite to that of climbing $\left(\vec{v}_{\text {rel }}\right)$, i.e., vertically down.
50. (4) (n) = Number of particle passing from unit area in unit time $=$
$\frac{\text { No. of particle }}{A \times t}=\frac{\left[M^{0} L^{0} T^{0}\right]}{\left[L^{2}\right][T]}=\left[L^{-2} T^{-1}\right]$
$\left[n_{1}\right]=\left[n_{2}\right]=$ No. of particle in unit volume $=\left[\mathrm{L}^{-3}\right]$
Now, from the given formula $[D]=\frac{[n]\left[x_{2}-x_{1}\right]}{\left[n_{2}-n_{1}\right]}$
$=\frac{\left[L^{-2} T^{-1}\right][L]}{\left[L^{-3}\right]}=\left[L^{2} T^{-1}\right]$.

CHEMISTRY

SECTION - A (35 Questions)

51. (2) A-(i), B-(iv), C-(ii), D-(iii)
52. (2) Conceptual fact.
53. (3) Statement- 1 is false, Statement- 2 is true
54. (3) The equilibrium is affected when the pressure is constant and the value of $\Delta n_{g} \neq 0$.
55. (3) Using formula $\Delta \mathrm{E}=\mathrm{hcR}_{\mathrm{H}}\left[\frac{1}{\mathrm{n}_{1}^{2}}-\frac{1}{\mathrm{n}_{2}^{2}}\right]$

For lowest energy of spectral lines in Lyman series, $\mathrm{n}_{1}=1, \mathrm{n}_{2}=2$
So, $\Delta \mathrm{E}=\mathrm{hcR}_{\mathrm{H}}\left[\frac{1}{(1)^{2}}-\frac{1}{(2)^{2}}\right]=\mathrm{hcR}_{\mathrm{H}} \times \frac{3}{4}$
$\Delta \mathrm{E}=\frac{3}{4} \mathrm{hcR}_{\mathrm{H}}$
56. (2) Adenine and thymine: guanine and cytosine
57. (3) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br}+\mathrm{NaOC}_{2} \mathrm{H}_{5}$
$\xrightarrow{\Delta} \mathrm{C}_{2} \mathrm{H}_{5}-\mathrm{O}-\mathrm{C}_{2} \mathrm{H}_{5}+\mathrm{NaBr}$
58. (1) A-III, B-I, C-II, D-IV
59. (3) $\mathrm{P}_{4}+3 \mathrm{NaOH}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \underset{\text { Phosphine }}{\mathrm{PH}_{3}}+\underset{\substack{\text { Sodium } \\ \text { hypophosphite }}}{3 \mathrm{NaH}_{2} \mathrm{PO}_{2}}$
60. (2) The dissociation of the given compounds are as follows
$\mathrm{CaCl}_{2} \rightarrow \mathrm{Ca}^{2+}+2 \mathrm{Cl}^{-} ; \mathrm{i}=3$
$\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right] \rightarrow 4 \mathrm{~K}^{+}+\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-} ; \mathrm{i}=5$
$\mathrm{AlCl}_{3} \rightarrow \mathrm{Al}^{3+}+3 \mathrm{Cl}^{-} ; \mathrm{i}=4$
$\mathrm{NH}_{2} \mathrm{CONH}_{2} \rightarrow$ does not dissociate, $\mathrm{i}=1$
Since, $\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$ given 5 ions in the solution. Hence, has maximum van't Hoff factor.
61. (2) (A) The molar mass of hydrogen peroxide is $34 \mathrm{~g} / \mathrm{mol}$, The molarity of 34 g of hydrogen
peroxide in 500 mL is $\frac{34}{34} \times \frac{1000}{500}=2 \mathrm{M}$.
(B) The normality of hydrogen peroxide is twice its molarity. It is $2 \times 2=4 \mathrm{~N}$.
(C) Percent w / V of hydrogen peroxide solution is
$\frac{34 \mathrm{~g} \times 1000 \mathrm{~mL} / \mathrm{L}}{500 \mathrm{~mL}}=68 \%$.
(D) Volume strength $=11.2 \times$ molarity

$$
=11.2 \times 2=22.4 \mathrm{~g} / \mathrm{L}
$$

Hence, the correct match is
A-(iv), B-(iii), C-(i), D-(ii)
62. (1) $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}+\mathrm{PBr}_{3} \longrightarrow$
(iso-Propyl alcohol)

63. (1) 1-(4); 2-(3); 3-(2); 4-(1)
64. (4) Zn (II)
65. (4) (a)-(iii), (b)-(i), (c)-(ii)
66. (4) According to Bohr model, radius of hydrogen atom
$\mathrm{r}_{\mathrm{n}}=\frac{0.529 \times \mathrm{n}^{2}}{\mathrm{Z}} \AA$
where, $\mathrm{n}=$ number of orbit
$Z=$ atomic number $(Z=1$ for hydrogen $)$
$r_{3}=\frac{0.529 \times(3)^{2}}{1}=0.529 \times 9=4.761 \AA$
67. (1)

68. (2) Diastereomers
69. (4) Work done is given as, $\mathrm{W}=-\mathrm{p}_{\mathrm{ext}} \times \Delta \mathrm{V}$

Since, gas enters the vacuum bulb, $\mathrm{p}_{\text {ext }}=0$.
\therefore Work done is zero.
70. (3) We know that, $K_{p}=K_{C}(R T)^{\Delta n_{g}}$
$\Delta n_{g}=2-4=-2$
$\mathrm{K}_{\mathrm{p}}=0.50(\mathrm{RT})^{-2}=0.50(0.082 \times 673)^{-2}$
$=1.64 \times 10^{-4}$
71. (4) According to first law of thermodynamics,

$$
\Delta \mathrm{U}=\mathrm{q}+\mathrm{W}
$$

For isothermal process, $\quad \Delta \mathrm{U}=0$
Hence,

$$
q=-W
$$

For cyclic process,
$\Delta \mathrm{U}=0$
Hence,
$\mathrm{q}=-\mathrm{W}$
For isochoric process,
$\Delta \mathrm{V}=0$
Hence,
$\Delta \mathrm{U}=\mathrm{q}$
$(\mathrm{W}=\mathrm{p} \Delta \mathrm{V}=0)$
For adiabatic process, $\quad \mathrm{q}=0$
Hence,
$\Delta \mathrm{U}=\mathrm{W}$
Thus, only option (4) is incorrect
72. (3) Half-cell reactions are
(i) At cathode,
$\mathrm{Fe}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Fe} ; \mathrm{E}_{\mathrm{Fe}^{2+} / \mathrm{Fe}}^{0}=-0.44 \mathrm{~V}$
(ii) At anode,
$\mathrm{Sn} \rightarrow \mathrm{Sn}^{2+}+2 \mathrm{e}^{-} ; \mathrm{E}_{\mathrm{Sn} / \mathrm{Sn}^{2+}}^{0}=-0.14 \mathrm{~V}$
$\mathrm{E}_{\mathrm{cell}}^{0}=\mathrm{E}_{\mathrm{Fe}^{2+} / \mathrm{Fe}}^{0}-\mathrm{E}_{\mathrm{Sn} / \mathrm{Sn}^{2+}}^{0}$
$=-0.44+0.14=-0.30 \mathrm{~V}$
73. (1) Boiling point \propto Molar mass
74. (2) $\mathrm{CH}_{3} \mathrm{MgI}+\mathrm{H}_{2} \mathrm{O}$ gives 1 mole of CH_{4} 16.6 gram of $\mathrm{CH}_{3} \mathrm{MgI}$ is 0.1 mole gives 0.1 mole of CH_{4} gas $=2.24 \mathrm{~L}$.
75. (2) Electronic configuration of Osmium is $5 \mathrm{~d}^{6} 6 \mathrm{~s}^{2}$. Since 5 d and 6 s sub-shells have nearly equal energy. All the 8 electrons participate in bonding.
76. (1) Poor shielding of one of $4 f$ electrons by another in the subshell
77. (4) For first order reaction,

$$
\begin{array}{ll}
& \text { rate }=\mathrm{k}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right] \\
2.40 \times 10^{-5}=3.0 \times 10^{-5}\left[\mathrm{~N}_{2} \mathrm{O}_{5}\right] \\
\therefore & {\left[\mathrm{N}_{2} \mathrm{O}_{5}\right]=0.8}
\end{array}
$$

78. (4)

Statement I is true but Statement II is false.
The correct statement for II is
$\mathrm{E}_{\text {cell }}=\mathrm{E}_{\text {cathode }}-\mathrm{E}_{\text {anode }}$
If $\mathrm{E}_{\text {cell }}^{\text {cell }}$ should have a positive value for the cell to function then, $\mathrm{E}_{\text {cathode }}>\mathrm{E}_{\text {anode }}$ should be followed.
79. (4) Benzoic acid
80. (2)

81. (4) Stability of +3 oxidatin states increases on accout of inert pair effect. Reducing character of hydrides increases down the group because bond dissociation energy decreases down the group.
82. (1) $\left[\mathrm{Co}(\mathrm{en})\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}_{2}\right] \mathrm{Cl}$ exists in three geometrical isomeric forms and on of the geometrical isomers exhibit enantiomers.
83. (1) The given reaction is an example of disproportionation reaction. In this reaction, chlorine is oxidised as well as reduced.
The oxidation states of chlorine in $\mathrm{ClO}^{-}(\mathrm{aq}), \mathrm{ClO}_{3}^{-}$ (aq) and Cl^{-}are $+1,+5$ and -1 respectively.
Hence, (A) is false but (R) is true.
84. (1) Let A denotes benzene and B denotes toluene

In $1: 1$ molar mixture of A and B,
Mole fraction of A and B are
$\mathrm{x}_{\mathrm{A}}=\frac{1}{2}, \mathrm{x}_{\mathrm{B}}=\frac{1}{2}$
Vapour pressure of

$$
\mathrm{A}=\mathrm{p}_{\mathrm{A}}^{\mathrm{o}} \mathrm{x}_{\mathrm{A}}=12.8 \times \frac{1}{2}=6.4 \mathrm{kPa}
$$

Vapour pressure of

$$
\mathrm{B}=\mathrm{p}_{\mathrm{B}}^{\mathrm{o}} \mathrm{x}_{\mathrm{B}}=3.85 \times \frac{1}{2}=1.925 \mathrm{kPa}
$$

Thus, vapour will contain high percentage of benzene than toluene.
85. (1) Sodium phenoxide

SECTION - B (Attempt Any 10 Questions)

86. (1) de-Broglie wavelength of electron,
$\lambda=\frac{\mathrm{h}}{\mathrm{mv}}=\frac{\mathrm{h}}{\sqrt{2 \mathrm{eVm}}} \quad\left(\because \mathrm{eV}=\frac{1}{2} \mathrm{mv}^{2}\right)$
$=\frac{6.626 \times 10^{-34}}{\sqrt{2 \times 1.6 \times 10^{-19} \times \mathrm{V} \times 9.1 \times 10^{-31}}}$
$=\frac{6.626 \times 10^{-34}}{5.396 \times 10^{-25}[\mathrm{~V}]^{1 / 2}}$
$=\frac{1.227 \times 10^{-9}}{[\mathrm{~V}]^{1 / 2}} \mathrm{~m}$
$=\frac{12.27 \times 10^{-10}}{[\mathrm{~V}]^{1 / 2}} \mathrm{~m}$
$\frac{12.27}{[\mathrm{~V}]^{1 / 2}} \AA \approx\left[\frac{150}{\mathrm{~V}}\right]^{1 / 2} \AA$
87. (3) (i), (ii) and (iv) only
88. (4)

89. (2) (H-F......H-F.......H-F), NH_{3} and $\mathrm{H}_{2} \mathrm{O}$ will form a three-dimenstional polymeric structure and H -bonds in HCl are not very strong as in HF. So, formation of polymeric structure is difficult.
90. (3) Follow IUPAC rule.
91. (2) For production of 180 g of glucose; heat energy is required $=\mathrm{x} \mathrm{kcal} \mathrm{mol}^{-1}$
Number of moles of glucose to be produced $=\frac{1.6}{180}$
$-0.64=\frac{\mathrm{x}}{180} \times 1.6$
$\mathrm{x}=\frac{-0.64 \times 180}{1.60} \Rightarrow-72 \mathrm{kcal} \mathrm{mol}^{-1}$
92. (2) The correct graph regarding photoelectric effect is

93. (4)

94. (2)

95. (1)

$\left[\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{4} \mathrm{ClBr}\right]^{+}+\mathrm{NO}_{3}^{-}+\mathrm{AgCl}($ white ppt)

96. (3) Among the given statements, only A and D are incorrect while the statements B, C and E are correct.

The correct form of incorect statements are :
Bonding molecular orbital has lower energy than antibonding moelcular orbital
In a stable moelcule, the number of electron bonding in molecular orbital is always greater than the number of antibonding electrons.
97. (3) We know that,

$$
\begin{aligned}
\Delta \mathrm{G} & =-2.303 \mathrm{RT} \log \mathrm{~K} \\
& =-2.303 \times 8.314 \times 298 \log 50 \\
& =-9694 \mathrm{~J}=-9.694 \mathrm{~kJ}
\end{aligned}
$$

98. (1) For a salt of weak acid and weak base;
$\mathrm{pH}=7+\frac{1}{2}\left(\mathrm{pK}_{\mathrm{a}}-\mathrm{pK}_{\mathrm{b}}\right)$
$=7+\frac{1}{2}(5.23-4.75)=7.24$
99. (4) If both the Assertion and Reason are incorrect
100. (2) $\mathrm{RCN} \xrightarrow{\text { Hydrolysis }} \mathrm{RCOOH}+\mathrm{NH}_{3}$

$\mathrm{RNC}+2 \mathrm{H}_{2} \mathrm{O} \xrightarrow{\Delta} \mathrm{RNH}_{2}+\mathrm{HCOOH}$

BOTANY

Section - A (35 Questions)

101. (4) (NCERT $11^{\text {th }}$ Page no. 39 last line of $1^{\text {st }}$ para.)
102. (3) (NCERT $12^{\text {th }}$ Page no. 248 fig 14.4 (a))
103. (2) (NCERT 11 ${ }^{\text {th }}$ Page No. 74; Sub-topic 5.5.1.2)
104. (3) (NCERT $12^{\text {th }} \operatorname{Pg} 83$, 5.3.3 Linkage and Recombination based)
105. (1) (NCERT 12 ${ }^{\text {th }} \mathrm{Pg} 89$, Figure 5.14)
106. (2) (NCERT $11^{\text {th }}$ Page no. $293{ }^{\text {rd }}$ para)
107. (4) [NCERT $11^{\text {th }}$, Page 249 , point 15.4.3.3]
108. (2) [NCERT 11 ${ }^{\text {th }}$, Page 250, point 15.4.3.4 (Line no. 01)]
109. (3) (NCERT $12^{\text {th }}$, Pg. 83, Linkage based)
110. (3) (NCERT $11^{\text {th }}$ Page No. 76; Sub-topic 5.6)
111. (1) (NCERT 11 ${ }^{\text {th }}$ Page No. 77; Figure 5.18)
112. (2) (NCERT 12 ${ }^{\text {th }}, \operatorname{Pg} 99$, 6.1.2 Packaging of DNA Helix, Para 3, Line 4)
113. (3) (NCERT 12 ${ }^{\text {th }}, \operatorname{Pg} .103$, para $4-5, \operatorname{Pg} 108$, Line 4, Pg. 106, para 2, Pg 115, para 4, Line 8)
114. (3) (NCERT $11^{\text {th }}$ para10.2.1 based / Page no.165)
115. (3) (NCERT $11^{\text {th }}$ page no. $213,2^{\text {nd }}$ paragraph $5^{\text {th }}$ and $6^{\text {th }}$ line)
116. (2) (NCERT $11^{\text {th }}$ page no. 216, 13.7.2, 1 and page no. 219, $2^{\text {nd }}$ paragraph)
117. (1) (NCERT $11^{\text {th }}$, Page no- 26, last paragraph, Line no- 1,2)
118. (2) (NCERT 12 ${ }^{\text {th }}$, Page no- 25, Paragraph- 2, Line no-4,5)
119. (1) (NCERT $11^{\text {th }}$ para 10.1.1,10.2.1, based / Page no.163,164,165)
120. (4) (NCERT 12 ${ }^{\text {th }}, \operatorname{Pg} 91,5.8 .3$ Chromosomal Disorders, Para 2)
121. (3) [NCERT 11 ${ }^{\text {th }}$, Page no. 89, Line no.- 1214]
122. (3) (NCERT $11^{\text {th }}$ Page no.30,3.1 $3^{\text {rd }}$ para.)
123. (2) (NCERT $\left.11^{\text {th }} \mathrm{Pg} .233,14.4\right)$
124. (4) (NCERT 12 ${ }^{\text {th }}, \operatorname{Pg} 76,5.2 .2 .1$ Incomplete Dominance concept)
125. (3) (NCERT 12 ${ }^{\text {th }}, \operatorname{Pg} 117$, Figure 6.14 The lac Operon)
126. (3) (NCERT 12 ${ }^{\text {th }}$, Pg. 108, Para 2, Line 10)
127. (3) (NCERT $12^{\text {th }}$, Pg. 75, 5.2.2 Law of Segregation, Line 5)
128. (3) (NCERT $11^{\text {th }} \mathrm{Pg} .230,3^{\text {rd }}$ Para, $13^{\text {th }}$ line)
129. (4) (NCERT 12 ${ }^{\text {th }}, \operatorname{Pg} 114$, Para 1, Line 1 based)
130. (1) (NCERT 11 ${ }^{\text {th }}$, Page no- 19, Paragraph2.1.2, Line no-6-8)
131. (1) (NCERT 11 th Page no- 21, Paragraph2.2.4, Line no-1-3)
132. (1) (NCERT $11^{\text {th }}$ para 8.5 .1 based conceptual/ Page no.131)
133. (2) (NCERT $11^{\text {th }}$ para 8.5.3.1 based / Page no.133)
134. (2) (NCERT $11^{\text {th }}$, Page no-7, $1^{\text {st }}$ paragraph, Line no-4)
135. (2) (NCERT 12 ${ }^{\text {th }}$, Page no- 26, Figure- 2.8 (a))

SECTION - B (Attempt Any 10 Questions)

136. (4) [NCERT $11^{\text {th }}$, Page no. 92 (Figure 6.7), 93 (Line no.-01-08)]
137. (2) (NCERT $11^{\text {th }}$ conceptual - page no. 214, point (b) and (c))
138. (1) [NCERT 11 ${ }^{\text {th }}$, Page 249 and 250 , point 15.4.3.3]
139. (3) (NCERT $11^{\text {th }}$ para 10.4 .1 based / Page no.169)
140. (3) (NCERT 12 ${ }^{\text {th }}$, Page no- $36,1^{\text {st }}$ paragraph, Line no-1-4)
141. (4) (NCERT $11^{\text {th }}$, Living world, whole chapter conceptual)
142. (4) (NCERT $11^{\text {th }}$ para 8.5 .1 conceptual based / Page no.131)
143. (2) (NCERT $11^{\text {th }}$, Page no- $17,3^{\text {rd }}$ paragraph, Line no-1-10)
144. (2) (NCERT $11^{\text {th }}$ Pg.232, Fig. 14.3)
145. (3) (NCERT 12 ${ }^{\text {th }}$, Page No 112, Para 2)
146. (4) (NCERT $11^{\text {th }}$ Page No. 80; Sub-topic 5.9.2 and added famiy)
147. (1) (NCERT 11 ${ }^{\text {th }}$, Page no- 21, Paragraph2.2.4, Line no-1-3)
148. (1) (NCERT $11^{\text {th }}$ para 8.5 .1 conceptual based / Page no.131)
149. (4) (NCERT $11^{\text {th }}$ Page no. 34 to 39 concept based.)
150. (3) (NCERT $12^{\text {th }}$ Page no.243, $14.3,2^{\text {nd }}$ para, $4^{\text {th }}$ line.)

ZOOLOGY

Section - A (35 Questions)

151. (3) (NCERT 12 ${ }^{\text {th }}$ Page No. 148-149)
152. (1) (NCERT 11 ${ }^{\text {th }}$; Page No. 52; Phylum Aschelminthes)
153. (4) [NCERT $11^{\text {th }}$ P.No. 318 , Last 5 lines]
154. (4) (NCERT $11^{\text {th }}$ p.no 118 , para3, line 8)
155. (2) (NCERT $11^{\text {th }}$ Page No - 185 - Mechanism of breathing)
156. (4) (NCERT $12^{\text {th }}$, p.no 51, line17)
157. (2) (NCERT 12 ${ }^{\text {th }}$ p.no 53, Figure 3.12)
158. (4) [NCERT 11 ${ }^{\text {th }}$ Page No.304, Last Para]
159. (2) (NCERT $12{ }^{\text {th }}$ Page no.228,13.2.2, $1^{\text {st }}$ para.)
160. (2) (NCERT 12 ${ }^{\text {th }}$ p.no 61, para1, line 2)
161. (2) (NCERT 11 th p.no 114, para3, line 3)
162. (2) (NCERT 11 ${ }^{\text {th }}$, Page no- 144, Paragraph1, Line no- 1-3, and Page no-145, Figure-9.1)
163. (2) (NCERT $11^{\text {th }}$, Page no- 155, Paragraph- 2, Line no-1-6)
164. (3) (NCERT $12^{\text {th }}$ para 10.2.3 / Page no. 183)
165. (3)(NCERT $12^{\text {th }} 10.1$ BIOTECHNOLOGICAL APPLICATIONS IN AGRICULTURE)
166. (3) (NCERT 12 ${ }^{\text {th }}$, Page no-138, Figure-7.9)
167. (2) (NCERT $12^{\text {th }}$, Page no- $138,1^{\text {st }}$ paragraph, Line no-5)
168. (4) [NCERT $12^{\text {th }}$ P.No.213, Ethical Issues, $3^{\text {rd }}$ para, $2^{\text {nd }}$ Line]
169. (4)[NCERT 12 ${ }^{\text {th }}$ P.No.213, Biological Products , $6^{\text {th }}$ ine]
170. (3) [NCERT $12^{\text {th }}$ P.No.202, PCR applied]
171. (4) (NCERT 12 ${ }^{\text {th }}$, Page no- 129, Paragraph7.3, Line no- 12, 13)
172. (2) (NCERT $11^{\text {th }}$; Page No.57; ClassOsteichthyes)
173. (4) (NCERT $11^{\text {th }}$; Page No. 334, last line of 1st paragraph)
174. (2) (NCERT $12^{\text {th }}$ Page no.259, 15.1.1, $5^{\text {th }}$ line)
175. (2) (NCERT 12 ${ }^{\text {th }}$ p.no 51 , para 1 , line1)
176. (2) (NCERT 11 ${ }^{\text {th }}$; Page No.297; 4th line of 4th paragraph)
177. (4) [NCERT11 ${ }^{\text {th }}$ P.No.312, Disorders]
178. (4) (NCERT $11^{\text {th }} \mathrm{Pg}$. No. 199-200)
179. (3) (NCERT $12^{\text {th }}$ Page no.234, (ii), $1^{\text {st }}$ para.)
180. (3) (NCERT $12^{\text {th }}$ p.no 59 , para2, line 8)
181. (4) [NCERT $11^{\text {th }}$ P.No.312, Synovial Joints]
182. (3) [NCERT $11^{\text {th }}$ P.No. 321 , Line 9 to 12]
183. (4) (NCERT $11^{\text {th }}$ Page No - 196 - Coagulation of blood)
184. (3) (NCERT $12^{\text {th }}$ Page No - 148 - Malaria)
185. (4) (NCERT $11^{\text {th }}$ Page No. 271)

SECTION - B (Attempt Any 10 Questions)

186. (1)(NCERT $12^{\text {th }}$, Page no- 131, $2^{\text {nd }}$ paragraph, Line no-1-7)
187. (1) (NCERT 11 ${ }^{\text {th }}$, Page no- 147, Table- 9.4)
188. (3) (NCERT $12^{\text {th }}$ para $10.5 /$ Page no.186,187)
189. (4) (NCERT $12^{\text {th }}$ Page no. $266,2^{\text {nd }}$ para to $267,3^{\text {rd }}$ para)
190. (4) (NCERT $11^{\text {th }}$, p.no 101, para3, line 6)
191. (3) (NCERT $12^{\text {th }}$ p. no 60, para1, line 10)
192. (3) (NCERT $12^{\text {th }}$ Page No - 145 - Introduction)
193. (3) (NCERT $12{ }^{\text {th }}$ Page No - 150 - Immunity)
194. (4) (NCERT 11 ${ }^{\text {th }}$ Page No - 202 - Double Circulation)
195. (1) (NCERT $11^{\text {th }}$ mixed question of A.K. and organisms and population.)
196. (3) (NCERT 11 ${ }^{\text {th }}$, Conceptual (chemical coordination)
197. (2) (NCERT 11 ${ }^{\text {th }}$; Page No. 296 13th line of 1st paragraph)
198. (3) [NCERT $11^{\text {th }}$ P.No.311,Pelvic Girdle,Page $3103^{\text {rd }} \& 4^{\text {th }}$ line, Page 312 Disorders]
199. (2) [NCERT $11^{\text {th }}$ P.No.317, Line 18-19 Applied]
200. (2) [NCERT 12 ${ }^{\text {th }}$ P.No.211, Last Para]
