ANSWER KEY \& SOLUTION KEY FINALROUND - 12 (PCB) Dt.21.04.2024

PHYSICS

SECTION - A (35 Questions)

1. (3) As, current in loop A increases with time, the loop B opposes the increases in magnetic flux (due to increasing current in A). According to Lenz's law, induced current in B will be such that the loop B is repelled by the loop A.
2. (2)
3. (4) Process iaf: $\Delta Q=\Delta U+\Delta W$
$\Delta U=U_{f}-U_{i}=\Delta Q-\Delta W=50-20=30 J$
Process f to i :
$\Delta Q=\Delta U+\Delta W=U_{i}-U_{f}+\Delta W$

$$
=-30-13=-43 \mathrm{~J} .
$$

4. (1) Viscous force $(F)=\eta A \times \frac{d v}{d x} \propto A$ (Where A is the area of the plates).
Hence, the correct answer is option (1)
5. (2) Here, $\Delta x=3.75 \mu \mathrm{~m}=3.75 \times 10^{-6} \mathrm{~m}$
$\lambda=5000 \AA=5 \times 10^{-7} \mathrm{~m}$
Now $\frac{\Delta x}{\lambda}=\frac{3.75 \times 10^{-6}}{5 \times 10^{-7}}=\frac{37.5}{5}=7.5$
$\Delta x=7.5 \lambda$
i.e. path difference is odd integral multiple of half the wavelength. Therefore, the point will be dark.
6. (3) \because Least count is of three decimal places

So correct measurement will be 5.320 cm
07. (3) The capacitance of a parallel plate capacitor in the absence of the dielectric is
$C_{0}=\frac{\varepsilon_{0} A}{d}$
where A is the area of each plate and d is the distance between them.
The capacitance of a parallel plate capacitor in the presence of dielectric slab of thickness t and dielectric constant K, is
$C=\frac{\varepsilon_{0} A}{(d-t)+\left(\frac{t}{K}\right)}=\frac{\varepsilon_{0} A}{\left(d-\frac{3}{4} d\right)+\left(\frac{3 d}{4 K}\right)}$
$C=\frac{\varepsilon_{0} A}{\frac{d}{4}+\frac{3 d}{4 K}}=\frac{4 K \varepsilon_{0} A}{d(K+3)}$
Divide (ii) by (i), we get
$\frac{C}{C_{0}}=\frac{4 K \varepsilon_{0} A}{d(K+3)} \times \frac{d}{\varepsilon_{0} A}=\frac{4 K}{K+3}$
08. (2) $\vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}+\vec{F}_{4}+\vec{F}_{5}=2(4 \hat{i})$
and $\vec{F}_{2}+\vec{F}_{3}+\vec{F}_{4}+\vec{F}_{5}=2(7 \hat{j})$
From (i) and (ii), $\vec{F}_{1}=8 \hat{i}-14 \hat{j}$
$\vec{a}_{1}=\frac{\vec{F}_{1}}{m}=4 \hat{i}-7 \hat{j} \Rightarrow a_{1}=\sqrt{16+49}=\sqrt{65} \mathrm{~m} / \mathrm{s}^{2}$
09. (1)
10. (2)
11. (1) Work done $\mathrm{W}=\vec{F} \times \vec{S}$

Here, displacement in the direction of force is R , so
Work done $=$ FR
12. (1) In a purely inductively or capacitive circuit, power factor, $\phi=0$ and no power is dissipated even though a current is flowing in the circuit. In such case, current is referred to as wattless current.
13. (4)
14. (2)

Stress is same $\sigma=F / A$
Stain $\in_{C u}=\frac{\sigma}{Y_{C u}}, \epsilon_{F e}=\frac{\sigma}{Y_{F e}}$.
$15 \quad$ (1)
16. (1) Solid sphere reaches the bottom first because for solid cylinder $\frac{K^{2}}{R^{2}}=\frac{1}{2}$ and for hollow cylinder
$\frac{K^{2}}{R^{2}}=1$
Acceleration down the inclined plane $\propto \frac{1}{K^{2} / R^{2}}$. Solid cylinder has greater acceleration, so it reaches the bottom first.
17. (1)

As the belt does not slip, $v_{A}=v_{B}$
or $r_{A} \omega_{A}=r_{B} \omega_{B}$ or $\frac{\omega_{A}}{\omega_{B}}=\frac{r_{B}}{r_{A}}=3$
Ifboth the wheels have same angular momentum, then

$$
I_{A} \omega_{A}=I_{B} \omega_{B} \text { or } \frac{I_{B}}{I_{A}}=\frac{\omega_{A}}{\omega_{B}}=3
$$

18. (1) $\frac{d Q}{d t}=\frac{K A \Delta \theta}{l}$

For both rods K, A and $\Delta \theta$ are same.
$\therefore \frac{d Q}{d t} \propto \frac{1}{l}$
So $\frac{(d Q / d t)_{\text {Senicircular }}}{(d Q / d t)_{\text {Straight }}}=\frac{l_{\text {Straight }}}{l_{\text {Semicicrular }}}=\frac{2 r}{\pi r}=\frac{2}{\pi}$
19. (2) Current density $\mathrm{J}=\frac{i}{A}=\frac{i}{\pi r^{2}} \Rightarrow \frac{J_{1}}{J_{2}}=\frac{i_{1}}{i_{2}} \times \frac{r_{2}^{2}}{r_{1}^{2}}$

But the wires are in series, so they have the same current, hence $i_{1}=i_{2}$. So $\frac{J_{1}}{J_{2}}=\frac{r_{2}^{2}}{r_{1}^{2}}=9: 1$
20. (1) $(\mathbf{A}) \rightarrow(\mathbf{2}) ;(\mathrm{B}) \rightarrow(\mathbf{1}) ;(\mathrm{C}) \rightarrow \mathbf{(4) ; (D) \rightarrow (3)}$
21. (3) At the time of maximum elongation
$\triangle P E_{g}=\triangle P E_{s}$
$M g x=\left(\frac{1}{2} k_{1} x^{2}+\frac{1}{2} k_{2} x^{2}\right)-0$
$4(10) x=\frac{1}{2}(400) x^{2}$
$x=\frac{1}{5} m \Rightarrow x_{\text {max }}=20 \mathrm{~cm}$
22. (3) $a_{\mathrm{rel}}=g-g=0$
$\vec{v}_{\text {rel }}=$ constant
$=50+50=100 \mathrm{~m} / \mathrm{s}$
23. (2) Here, $\vec{M}=50 \hat{i} A m^{2}, \vec{B}=(0.5 \hat{i}+3.0 \hat{j}) T$
$\vec{\tau}=\vec{M} \times \vec{B}=(50 \hat{i}) \times(0.5 \hat{i}+3.0 \hat{j})$
$\vec{\tau}=150 \times \hat{i} \times \hat{j}=150 \hat{k} \mathrm{Nm}$
24. (1) Using $R_{T_{2}}=R_{T_{1}}\left[1+\alpha\left(T_{2}-T_{1}\right)\right]$
$\Rightarrow R_{100}=R_{50}[1+\alpha(100-50)]$
$\Rightarrow 7=5[1+(\alpha \times 50)] \Rightarrow \alpha=\frac{(7-5)}{250}=0.008 /{ }^{\circ} \mathrm{C}$
25. (3) The given curved wire can be treated as a straight wire as shown.

Force acting on the wire AC,
$\mathrm{F}=\mathrm{Bil}=2 \times 2 \times 3 \times 10^{-2}=12 \times 10^{-2} \mathrm{~N}$ along y axis.

$\mathrm{F}=12 \times 10^{-2} \mathrm{~N}$.
$\mathrm{mg}=10 \times 10^{-3} \times 10=10 \times 10^{-2} \mathrm{~N}$
$\mathrm{F}_{\text {net }}=\mathrm{F}-\mathrm{mg}$
$\mathrm{F}_{\text {net }}=2 \times 10^{-2} \mathrm{~N}$
$\mathrm{ma}=2 \times 10^{-2} \Rightarrow 10^{-2} a=2 \times 10^{-2}$
$a=2 \mathrm{~m} / \mathrm{s}^{2}$
26. (3) Here, $V_{0}=10^{-6} \mathrm{~m}^{3}, A=2 \times 10^{-7} \mathrm{~m}^{2}$ $\Delta T=100^{\circ} \mathrm{C}, \Delta L=?, \gamma=18 \times 10^{-5} /{ }^{\circ} \mathrm{C}$
Now,
$\Delta V=\gamma V(\Delta T)=18 \times 10^{-5} \times 10^{-6} \times 100=18 \times 10^{-9} \mathrm{~m}^{3}$
As $\Delta V=A(\Delta L)$
$\therefore \Delta L=\frac{\Delta V}{A}=\frac{18 \times 10^{-9}}{2 \times 10^{-7}}=9 \times 10^{-2} \mathrm{~m}=9 \mathrm{~cm}$.
27. (1) $\lambda=\frac{c}{f}=\frac{3 \times 10^{8}}{120 \times 10^{6}}=2.5 \mathrm{~m}$
28. (3)
29. (4) When $b=0$, scattering angle, $\theta=180^{\circ}$.
30. (2) Liberated energy
$\mathrm{Q}=117 \times 8.5+117 \times 8.5-7.6 \times 236=195.4$ MeV .
Thus, in fission of one Uranium nuclei nearly 195

MeV energy is liberated.
31. (4) $v_{1}=\frac{d y_{1}}{d t}=2 \times 10 \cos (10 t+\theta)$
$v_{2}=-3 \times 10 \sin 10 t=30 \cos \left(10 t+\frac{\pi}{2}\right)$
\therefore Phase difference
$=(10 t+\theta)-\left(10 t+\frac{\pi}{2}\right)=\theta-\frac{\pi}{2}$.
32. (2) The velocity of transverse wave,
$v=\sqrt{\frac{T}{\mu}} \Rightarrow \frac{v_{1}}{v_{2}}=\sqrt{\frac{T_{1}}{T_{2}}} \Rightarrow \frac{v}{v} \times 2=\sqrt{\frac{2.06 \times 10^{4}}{T}}$
$\Rightarrow T=\frac{2.06 \times 10^{4}}{4}=0.515 \times 10^{4} \mathrm{~N}$
$\Rightarrow T=5.15 \times 10^{3} \mathrm{~N}$
33. (2) Shift in fringe pattern $=\frac{\beta}{\lambda}(\mu-1)$ t

$$
=\frac{\lambda D / d}{\lambda}(\mu-1) t=\frac{D}{d}(\mu-1) t
$$

34. (2) $\mathrm{F}=\mathrm{BIL} \therefore$ Dimension of
$[B]=\frac{[F]}{[I][L]}=\frac{\left[M L T^{-2}\right]}{[I][L]}=\left[M T^{-2} I^{-1}\right]$
Now dimension of
$[P]=\frac{B^{2} l^{2}}{m}=\frac{\left[M T^{-2} I^{-1}\right]^{2} \times\left[L^{2}\right]}{[M]}$
$=\left[M L^{2} T^{-4} I^{-2}\right]$
35. (3) $f_{1}=3, f_{2}=5, n_{1}=3, n_{2}=2$
$f_{\text {mixture }}=\frac{n_{1} f_{1}+n_{2} f_{2}}{n_{1}+n_{2}}=\frac{9+10}{f}=\frac{19}{5}$
$\gamma_{\text {mixture }}=1+\frac{2 \times 5}{19}=\frac{29}{19}=1.52$.

SECTION - B (Attempt Any 10 Questions)

36. (3) As force, $F=$ mass \times accen $=m\left(-\omega^{2} y\right)=-m \omega^{2} y$
i.e., $F \propto y$ so $\frac{F_{2}}{F_{1}}=\frac{y_{2}}{y_{1}}$ or
$F_{2}=F_{1} \times \frac{y_{2}}{y_{1}}=\frac{9 \times 6}{4}=13.5 \mathrm{~N}$.
37. (1)
38. (1) According to de-Broglie theory, de-Broglie
wave is given by $\lambda=\frac{h}{p}=\frac{h}{m v}$
$v=u+a t$
$\nu=v_{0}-\frac{e E}{m} t$
Hence, the correct answer is option (1).
39. (4) Here, the centre of mass of the system remains unchanged when the mass m moved a distance $L \cos \theta$, let the mass $(m+M)$ moves a distance x in the backward direction.
$\therefore(M+m) x-m L \cos \theta=0$
$\therefore x=\frac{m L \cos \theta}{M+m}$.
40. (2) Magnetic field at P will be zero due to b and e. Field at P due to c and f.

$B_{1}=2\left[\frac{\mu_{0} \sqrt{3}}{2 \pi r}\right]=\frac{4 \times 10^{-7} \sqrt{3}}{3 \times 10^{-2}}=\frac{40}{\sqrt{3}} \mu \mathrm{~T}$
Field at P due to a and d :
$B_{2}=2\left[\frac{\mu_{0} \sqrt{3}}{2 \pi r}\right]=\frac{40}{\sqrt{3}} \mu \mathrm{~T}$
Net field at P :
$B=\sqrt{B_{1}^{2}+B_{2}^{2}+2 B_{1} B_{2} \cos 60^{0}}=40 \mu \mathrm{~T}$
41. (2) Here, $n_{1}=500, L_{1}=125 \mathrm{mH}, n_{2}=800$, $L_{2}=$?
$\frac{L_{2}}{L_{1}}=\frac{n_{2}^{2}}{n_{1}^{2}}=\frac{(800)^{2}}{(500)^{2}}=\frac{64}{25}$
$\Rightarrow L_{2}=\frac{64}{25} L_{1}=\frac{64}{25} \times 125 \mathrm{mH}=320 \mathrm{mH}$.
42. (2) $W=\frac{2 \pi}{T}=100 \pi \Rightarrow T=\frac{2}{100} s=20 \mathrm{~ms}$
time for $\frac{A}{2}$ to A (like SHM)
$=\frac{T}{6}=3.3 \mathrm{~ms}$
43. (2) By Newton's third law of motion,

Reaction by floor on mass $\mathrm{M}=\frac{9 M g}{10}$ (Upward)
From figure,
$\mathrm{F}_{\text {net }}=$ on cabin of mass M
$=M g-\frac{9 M g}{10}=\frac{M g}{10}$ (downward)
By second law, $\frac{M g}{10}=M a \Rightarrow a=\frac{g}{10}$
44. (1) $A_{1}=5, A_{2}=3$
$\Delta \phi=2 \pi(1.5)=3 \pi$
$A_{\text {net }}=\sqrt{A_{1}^{2}+A_{2}^{2}+2 A_{1} A_{2} \cos (3 \pi)}$
$=\left|A_{1}-A_{2}\right|=2 \mathrm{~cm}$
45. (1) $(n+1)$ divisions of vernier scale
$=n$ divisions of main scale
$\therefore 1$ vernier division $=\frac{n}{n+1}$ main scale division
Least count $=1$ M.S.D. -1 V.S.D.
$=\left(1-\frac{n}{n+1}\right) M \cdot S \cdot D .=\left(\frac{1}{n+1}\right) M \cdot S \cdot D .=\frac{a}{n+1}$
46.
(4) $\frac{1}{f}=(1.5-1)\left(\frac{1}{R}+\frac{1}{R}\right)$
$\therefore R=f$
For the water len, $\frac{1}{f^{\prime}}=\left(\frac{4}{3}-1\right)\left(-\frac{1}{R}-\frac{1}{R}\right)$

$$
=\frac{1}{3}\left(-\frac{2}{f}\right)
$$

or $\frac{1}{f^{\prime}}=\frac{-2}{3 f}$
Now using, $\frac{1}{F}=\frac{1}{f_{1}}+\frac{1}{f_{2}}+\frac{1}{f_{3}}$

we have, $\frac{1}{F}=\frac{1}{f}+\frac{1}{f}+\frac{1}{f}=\frac{2}{f}-\frac{2}{3 f}=\frac{4}{3 f}$
$\therefore F=\frac{3 f}{4}$.
47. (3) When a particle is released from rest position under gravity, then $v=0$ but $a \neq 0$.
Also, a body s momentarily at rest at the instant, if it reverse the direction.

Therefore, Statement I is true but Statement II is false.
48. (3) Let v be the velocity with which the satellite strikes the surface of the earth. According to law of conservation of total mechanical energy, we get
$-\frac{G M m}{R+h}=\frac{1}{2} m v^{2}-\frac{G M m}{R}$ or $\mathrm{v}^{2}=\frac{2 G M}{R}-\frac{2 G M}{R+h}$
$\because \mathrm{v}_{0}=\sqrt{\frac{G M}{R+h}}$ and $v_{e}=\sqrt{\frac{2 G M}{R}}$
$\therefore \mathrm{v}=\sqrt{\mathrm{v}_{e}^{2}-2 \mathrm{v}_{0}^{2}}$.
49. (1)

From figure, $\tan \theta=\frac{F_{e}}{m g} \Rightarrow \frac{r / 2}{y}=\frac{k q^{2}}{\frac{r^{2}}{m g}}$
$\left[\because F=\frac{k q^{2}}{r^{2}}\right.$ from coulomb's law]
$\Rightarrow r^{3} \propto y \Rightarrow r^{\prime 3} \propto \frac{y}{2} \Rightarrow \frac{r^{\prime}}{r}=\frac{1}{2^{1 / 3}} \Rightarrow r^{\prime}=\frac{r}{\sqrt[3]{2}}$
50. (2)

$Y=A \cdot \bar{B}+\bar{A} \cdot B$
This is XOR GATE

CHEMISTRY

SECTION - A (35 Questions)

51. (3)

Moles of $\mathrm{Mg}^{2+}=\frac{48}{24}=2 \mathrm{~mole}$
Number of electrons $=2 \times 10 \mathrm{~N}_{\mathrm{A}}=20 \mathrm{~N}_{\mathrm{A}}$
52. (4)
$\mathrm{V} \propto \frac{\mathrm{Z}}{\mathrm{n}}$
53. (4)
$-\mathrm{COOH}$
54. (1)

All carbonyl compounds produce orange precipitate with 2, 4-Dinitrophenyl hydrozine.
55. (1)

The more the negative charge, the larger the size of anion.
Moreover along the period (\rightarrow) size of atom decreases.
\therefore Size of $\mathrm{O}^{\Theta}>\mathrm{F}^{\Theta}$
Size of atom is less than its anion. Hence the order is $\mathrm{O}^{2-}>\mathrm{O}^{\Theta}>\mathrm{F}^{\Theta}>\mathrm{F}$
56. (2)

Factual statement
57. (2)

KLMN \qquad $>$ energy increases.
58. (3)

Radial node $(\mathrm{n}-\mathrm{l}-1)=2$

$$
l=0, \mathrm{n}=3
$$

59. (1)

$$
\mathrm{CH}_{3} \mathrm{COOH}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}
$$

60. (4)

61. (4)

In $\mathrm{P}_{4} \mathrm{O}_{10}$, there are four shorter $\mathrm{P}=\mathrm{O}$ bonds and six longer $\mathrm{P}-\mathrm{O}-\mathrm{P}$ bonds.
62. (3)

Kr and Xe do form some chemical compounds.
63. (3)
$\mathrm{C}(\mathrm{s})+\frac{3}{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{Cl}_{2}(\mathrm{~g}) \longrightarrow \mathrm{CH}_{3} \mathrm{Cl}(\mathrm{g})$
64. (2)

For O_{3} to be stable, the reaction shouldn't be favourable in forward direction.
65. (4)

66. (1)
 $+2 \mathrm{HCl}$
67. (1)

In π acid ligand back bonding also take place
which in value filled orbitals of metal and vacant orbitals of ligand this is synergic effect.
68. (4)
$\left[\mathrm{CoCl}\left(\mathrm{NH}_{3}\right)_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{Cl}_{2}$
69. (3)
(P)-(2); (Q)-(1); (R)-(4); (S)-(3)
70. (1)
\because Strength of acid $\propto \frac{1}{\mathrm{pK}_{\mathrm{a}}}$
\therefore Formic acid will be strongest acid.
71. (2)

Structre of B.H.C.
72. (1)

Here, (1) is stable because it would not change to other stable carbocation. It can only change $2^{\circ} \mathrm{C}^{\oplus}$ to $2^{\circ} \mathrm{C}^{\oplus}$

On the other hand, (2) can change to two $2^{\circ} \mathrm{C} \oplus$ structures

Furthermore, (3) is stabilized by 1, 2-Me shift and (4) is stabilized by $1,2-\mathrm{H} \oplus$ shift.
73. (1)
$\mathrm{Co}^{3+}=[\mathrm{Ar}] 3 \mathrm{~d}^{6}$, unpaired $\mathrm{e}^{-}(\mathrm{n})=4$
Spin magnetic moment

$$
(\mu)=\sqrt{4(4+2)}=\sqrt{24} \text { B.M. }
$$

$\mathrm{Cr}^{3+}=[\mathrm{Ar}] 3 \mathrm{~d}^{3}$, unpaired $\mathrm{e}^{-}(\mathrm{n})=3$
Spin magnetic moment

$$
(\mu)=\sqrt{3(3+2)}=\sqrt{15} \mathrm{~B} \cdot \mathrm{M} .
$$

$\mathrm{Fe}^{3+}=[\mathrm{Ar}] 3 \mathrm{~d}^{5}$, unpaired $\mathrm{e}^{-}(\mathrm{n})=5$
Spin magnetic moment

$$
(\mu)=\sqrt{5(5+2)}=\sqrt{35} \text { B.M. }
$$

$\mathrm{Ni}^{2+}=[\mathrm{Ar}] 3 \mathrm{~d}^{8}$, unpaired $\mathrm{e}^{-}(\mathrm{n})=2$
Spin magnetic moment
$(\mu)=\sqrt{2(2+2)}=\sqrt{8}$ B.M.
74. (2)
$+3$
75. (1)

In osmosis, solvent molecules move from lower concentration (higher vapour pressure) to higher concentration (lower vapour pressure)
76. (4)

Anode : $2 \mathrm{Cl}^{-}(\mathrm{aq}) \longrightarrow \mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{e}^{-}$
Cathode: $2 \mathrm{H}_{2} \mathrm{O}+2 \mathrm{e}^{-}$ $\longrightarrow \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-}(\mathrm{aq})$ Net reaction

$$
\begin{aligned}
& 2 \mathrm{Na}^{+}(\mathrm{aq})+2 \mathrm{Cl}^{-}(\mathrm{aq})+2 \mathrm{H}_{2} \mathrm{O}(l) \longrightarrow \\
& \mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{OH}^{-}(\mathrm{aq})+2 \mathrm{Na}^{+}(\mathrm{aq})
\end{aligned}
$$

77. (3)

78. (2)

Same functional group but different chain around functional group.
79. (1)
$\mathrm{H}_{2} \mathrm{~S}$ has a bent shape and hence has a finite dipole moment while all other molecuels have zero dipole moment.
80. (4)

Tbp $\left(s p^{3} d\right)$ or $\left(d s p^{3}\right)$
(90° angle $=5$)

Square planar $\left(d s p^{2}\right)$ (90° angle $=4$)
iii.

81. (3)

Anode: $2 \mathrm{Ag}(\mathrm{s}) \rightleftharpoons 2 \mathrm{Ag}^{+}(\mathrm{aq})+2 \mathrm{e}^{-}$
Cathode: $\mathrm{Cu}^{2+}(\mathrm{aq})+2 \mathrm{e}^{-} \rightleftharpoons \mathrm{Cu}(\mathrm{s})$
Net reaction : $2 \mathrm{Ag}(\mathrm{s})+\mathrm{Cu}^{2+}(\mathrm{aq}) \rightleftharpoons 2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{Cu}(\mathrm{s})$
82. (2)

Lower the activation energy, easier/faster will be the reaction.
83. (3)

84. (2)

85. (2)

Isoelectronic with three bond order

SECTION - B (Attempt Any 10 Questions)

86. (1)
(1) For zero order reaction $t_{1 / 2} \propto A_{0}$
(2) For zero order $A_{0}-A_{t}=k t$ or $2 \mathrm{t}_{1 / 2}=\mathrm{t}_{\text {completion }}$
(3) For $1^{\text {st }}$ order reaction $t_{1 / 2}=\frac{0.693}{\mathrm{k}}$
(4) Rate law expression can contain reactants, products or catalysts but not intermediates.
87. (3)

Hofmann's bromamide reaction is used to convert amide to amine.
$\mathrm{RCONH}_{2}+\mathrm{Br}+4 \mathrm{KOH}$

88. (2)

$\mathrm{n}_{\mathrm{f}}=2$
$\mathrm{E}=\frac{126}{2}=63$
$\mathrm{HNO}_{3}\left(\mathrm{n}_{\mathrm{f}}=1\right) \quad \mathrm{E}=\frac{63}{1}=63$
89. (2)

For $3 \mathrm{~d}_{\mathrm{xy}}$ orbital:
Number of nodal plane $=\ell=2(x z \& y z$ plane $)$
Number of radial nodes $=n-\ell-1=3-2-1=0$
90. (3)

In this reaction
$[\mathrm{A}]=\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{O}^{-} \mathrm{MgBr}^{+}$
$[\mathrm{B}]=\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
$[\mathrm{C}]=\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COOH}$
91. (1)

> (i)-(c), (ii)-(e), (iii)-(a), (iv)-(b), (v)-(d)
92. (3)

A is true but R is false
93. (3)

A red coloured ppt. is obtained
94. (3)

Work $=$ area enclosed $=\frac{1}{2}\left(5 \mathrm{P}_{1} \times 2 \mathrm{~V}_{1}\right)=5 \mathrm{P}_{1} \mathrm{~V}_{1}$
95. (2)
$\mathrm{Q}_{\mathrm{C}}=\frac{\left[\mathrm{SO}_{3}(\mathrm{~g})\right]^{2}}{\left[\mathrm{SO}_{2}(\mathrm{~g})\right]^{2}\left[\mathrm{O}_{2}(\mathrm{~g})\right]^{1}}=1000>\mathrm{k}_{\mathrm{c}}$
i.e., reaction moves backward.
96. (3)
CHCl_{3} is stored in dark bottles to prevent oxidation of CHCl_{3} in presence of sunlight.
97. (3)

98. (1)

On ionisation it gives maximum number of (four) ions.
99. (1)
$\because\left(\mathrm{T}_{\mathrm{b}}\right)_{\text {Solvent }}<\left(\mathrm{T}_{\mathrm{b}}\right)_{)_{\text {Solution }}}$;
$\therefore \Delta \mathrm{S}_{\text {Solv }}>\Delta \mathrm{S}_{\text {Solution }}$
$\left(\Delta \mathrm{H}_{\text {Solution }}\right)=(\Delta \mathrm{H})_{\text {Solvent }}$
[Only solvent participate in vaporisation]
$\left(\mathrm{T}_{\mathrm{b}}\right)_{\text {Solvent }}<\left(\mathrm{T}_{\mathrm{b}}\right)_{\text {Solution }}$
[Due to elevation in BP of solution]
100. (1)

Assertion is correct, reason is correct; reason is a correct explanation for assertion.

BOTANY

Section - A (35 Questions)

101. (2) [NCERT Class XI, Page no. 91, Starting paragraph]
102. (3) (NCERT XI ; Page No.78; Sub-topic 5.8)
103. (2) (NCERT XII, Pg 106, Para 4, Line 9)
104. (3) (NCERT XII, Pg 106, Para 5, Line 6)
105. (4) (NCERT XI; Added family Malvaceae)
106. (1) (NCERT XII, Pg 75, Law of Segregation)
107. (2) (NCERT XII, Pg 78, Based on $2^{\text {nd }}$ para concept)
108. (2) (NCERT XII, Pg 88, based on Mutation and Law of dominance)
109. (1) (11th NCERT para 10.4.1 based / Page no.168)
110. (4) (NCERT 11 ${ }^{\text {th }}$, Page no- 23, Paragraph2.3.1, Line no- 6 and 7)
111. (3) (NCERT XII, Pg 114, based on translation)
112. (3) (NCERT XII, Pg 77, Based on Para $\left.2^{\text {nd }}\right)$
113. (1) (NCERT XI; Page No. 67; Sub-topic 5.1.2)
114. (2) (11th NCERT para8.4.2, 8.5.6/ Page no.129,136)
115. (2) (NCERT XII, Pg 99, Figure 6.4a)
116. (1) (NCERT 11 ${ }^{\text {th }}$, Page no-10, Paragraph-1.3.5, Line no- 1)
117. (3) (11th NCERT para 8.5.10 based conceptual / Page no.138)
118. (2) (11th NCERT para10.1.1 based / Page no.163)
119. (2) [NCERT class XI, Page no. 88, Subpoint 6.2]
120. (4) [NCERT class XI, Page 246, (First paragraph)]
121. (3) (NCERT XI Page No. 236, 14.7 last Paragraph, 1st line)
122. (3) ($11^{\text {th }}$ NCERT Page no. 37 to 38)
123. (4) ($11^{\text {th }}$ NCERT Page no. 32 to 33)
124. (4) ($11^{\text {th }}$ NCERT Page no. 31 Fig.3.1(b)
125. (1) (NCERT $11^{\text {th }}$, Page no- 27, Paragraph- $1^{\text {st }}$, Line no- 2,3 and 4)
126. (2) (NCERT $11^{\text {th }}$, Page no- 21, $2^{\text {nd }}$ paragraph, line no- 3)
127. (1) (NCERT $12^{\text {th }}$, Page no- 35 , Paragraph2.4.2, Line no- 1,2)
128. (4) (NCERT XII, Pg 108, Para 1, Line 7)
129. (3) (NCERT XI page no. 212, sub-topic 13.6.1 $-3^{\text {rd }}$ and $4^{\text {th }}$ line)
130. (3) (NCERT XII, Pg 121, Based on DNA FINGER PRINTING)
131. (4) (NCERT XI-page no. 219 last line and first two lines of page no. 220)
132. (4) (NCERT 12 ${ }^{\text {th }}$, Page no- 27, Paragraph2.2.3, Line no- 3,4)
133. (2) (NCERT 12 ${ }^{\text {th }}$, Page no- 27, Paragraph- $2^{\text {nd }}$, Line no- 6,7)
134. (2) (12th NCERT Page no.248, conceptual.)
135. (3) (NCERT XII, Pg 90 (Sickle-cell anaemia), Pg 113 (Mutations and Genetic Code))

SECTION - B (Attempt Any 10 Questions)

136. (4) [NCERT class XI, Page 248, 24, 9point 15.4.3.1]
137. (1) (NCERT XI Pg.233; 2nd Paragraph, last 4th line)
138. (3) (11th NCERT para10.4.1 based / Page no.168)
139. (4) ($11^{\text {th }}$ PK NCERT Page no 35 TO 39, CONCEPTUAL)
140. (4) (12 ${ }^{\text {th }}$ NCERT Page no. 248 fig. 14.4(b), concept)
141. (2) (NCERT XII, Pg 75, based on test cross)
142. (2) (NCERT 11 ${ }^{\text {th }}$, Page no-8, Paragraph-1st, Line no-16-19)
143. (2) (11th NCERT para 10 introduction based/ Page no.162)
144. (3) (NCERT XI - conceptual - page no. 218, $1^{\text {st }}$ paragraph)
145. (3) (NCERT XI; Page No. 80; Sub-topic 5.9.2)
146. (1) [NCERT class XI, Page 250, point 15.4.3.4]
147. (2) (NCERT XI Pg.230, $1^{\text {st }}$ Para, $1^{\text {st }}$ line)
148. (4) (11th NCERT para 8.4.1 / Page no. 129)
149. (3) (NCERT 12 ${ }^{\text {th }}$, Page no- 26 and 27, Concept based)
150. (2) (NCERT 11 ${ }^{\text {th }}$, Page no-23, Paragraph- 2nd, Line no-11-15)

ZOOLOGY

Section - A (35 Questions)

151. (2) (NCERT 11 ${ }^{\text {th }}$, Page no- 151, Paragraph9.8, Line no-4-6)
152. (4) (12 ${ }^{\text {th }}$ NCERT Page no 231)
153. (4) (12 ${ }^{\text {th }}$ NCERT Page no. 266 to 267)
154. (4) ($12^{\text {th }}$ NCERT Page no. $2611^{\text {st }}$ para)
155. (3) (NCERT $11^{\text {th }}$ p.no 111, fig.7.14)
156. (3) (Page No. 292 1st line)
157. (4) (Page No. 298, last two lines of 1 st paragraph)
158. (2) [NCERT P.No.311, $2^{\text {nd }}$ para $8^{\text {th }}$ Line]
159. (1) [NCERT P.No.321, Line $9^{\text {th }}$ to $\left.12^{\text {th }}\right]$
160. (2) [NCERT P.No.321, Forebrain Last 4 Lines]
161. (2) (NCERT 12 ${ }^{\text {th }}$, p.no. 60, para2)
162. (3) (NCERT 12 ${ }^{\text {th }}$, p.no. 44 , para4,45-para1)
163. (2) (NCERT Pg. No. 154-155)
164. (3) (NCERT Page No. 145)
165. (1) (NCERT Conceptual Page No. 340, 4th line of 2 nd paragraph)
166. (3) (NCERT 12 ${ }^{\text {th }}$, p.no. 64 , para 2,line 8)
167. (1) (NCERT 12 ${ }^{\text {th }}$, p.no. 62, para 5, line 2)
168. (1) [NCERT P.No.212, $3{ }^{\text {rd }}$ para]
169. (2) (NCERT 11 ${ }^{\text {th }}$, Page no- 157, Paragraph$1^{\text {st }}$, Line no-1-4)
170. (3) (Page No. 337, last Paragraph)
171. (1) (Page No. 53; Phylum arthropoda)
172. (4) [NCERT P.No.312, Synovial Joint]
173. (4) (NCERT Pg.199, 3 points)
174. (1) (NCERT 12 ${ }^{\text {th }}$, p.no. 43, para3, line2)
175. (2) (12 ${ }^{\text {th }}$ NCERT 10.1 BIOTECHNOLOGICAL APPLICATIONS IN AGRICULTURE)
176. (1) [NCERT P.No.304, Last Para]
177. (3) (NCERT Page No. 274)
178. (4) (NCERT Page No. 130-133)
179. (1) [NCERT P.No.208, GOM Points: $5^{\text {th }}$ point]
180. (3) (12th NCERT para10.2.3 / Page no.183)
181. (1) (NEET-2019/NCERT Page - 284)
182. (1) (NEET-2014/NCERT Page - 280)
183. (3) (NCERT $12{ }^{\text {th }}$, Page no- $129,1^{\text {st }}$ Paragraph, Line no-1-4)
184. (4) (NCERT 12 ${ }^{\text {th }}$, Page no- 133, $1^{\text {st }}$ Paragraph, Line no- 10,11)
185. (2) (NCERT-12 ${ }^{\text {th }}$, Page no- 133, $1^{\text {st }}$ paragraph concept based)

SECTION - B (Attempt Any 10 Questions)

186. (2) (NCERT 11 ${ }^{\text {th }}$, Page no- 148, Paragraph-9.5)
187. (2) (NCERT $12^{\text {th }}$, Page no $137,2^{\text {nd }}$ paragraph, Line no 10 and 11)
188. (3) ($12^{\text {th }}$ NCERT Page no. 230 fig. 13.5)
189. (3) [NCERT P.No.312, Synovial Fluid]
190. (3) (NCERT $11^{\text {th }}$ p.no 101,120)
191. (2) (Page No. 51; Phylum - platy helminthes)
192. (4) [NCERT P.No.193, $3^{\text {rd }}$ para]
193. (4) (Page No. 337, 2nd line and 1st line of 3rd paragraph)
194. (2) [NCERT P.No. 316, first 2 lines \& P.No.318, Para Below Diagram]
195. (1) (NEET-2018/NCERT Page - 149)
196. (3) (NCERT Page No. 143)
197. (3) (NCERT $11^{\text {th }}$ p.no 118, para 1, line5)
198. (3) (NCERT 12 ${ }^{\text {th }}$, p.no. 46, para3, line7)
199. (2) (12th NCERT para10 .3/ Page no.183)
200. (2) (NCERT Pg. No. 190)
