S ANSWER KEY \& SOLUTION KEY FINAL ROUND-11 (PCB) Dt.20.04.2024

PHYSICS

SECTION - A (35 Questions)

1. (2)
2. (2) Given, mass $=m=5 \mathrm{~kg}$
acting force $=\vec{F}=(-3 \hat{i}+4 \hat{j}) \mathrm{N}$.
Initial velocity at $t=0, \mathrm{v}=(6 \hat{i}-12 \hat{j}) \mathrm{m} / \mathrm{s}$
Retardation, $\hat{a}=\frac{F}{m}=\left(-\frac{3 \hat{i}}{5}+\frac{4 \hat{j}}{5}\right) \mathrm{m} / \mathrm{s}^{2}$
As final velocity is along Y -axis only, its x -component must be zero.
Form $\mathrm{v}=u+a t$, for X-component only, $0=6 \hat{i}-\frac{3 \hat{i}}{5} t \Rightarrow t=\frac{5 \times 6}{3}=10 \mathrm{~s}$.
3. (3)
4. (1) All given measurements are correct upto two decimal places. As here 5.00 mm has the smallest unit and the error in 5.00 mm is least (commonly taken as 0.01 mm if not specified), hence, 5.00 mm is most precise.
5. (1)
6. (3) As given motion is two dimensional motion and given that instantaneous speed v_{0} is positive constant. Acceleration is rate of change of velocity (instantaneous speed) hence it will also be in the plane of motion.
7. (2)
8. (3) When the object moves from infinity to 2 F , image moves from F to 2 F .
When the object moves from 2 F to F , image moves from 2 F to infinity.
Hence, distanced moved by image varies non-uniformly.
9. (4) Given, $h=1.5 \mathrm{~m}, \mathrm{v}=1 \mathrm{~m} / \mathrm{s}, m=10 \mathrm{~kg}, g=10$ $\mathrm{m} / \mathrm{s}^{2}$
From conservation of mechanical energy.
$(P E) i+(K E) i=(P E) f+(K E) f$
$\Rightarrow m g h+\frac{1}{2} m \mathrm{v}^{2}=0+(K E) f$
$\Rightarrow(K E) f=m g h+\frac{1}{2} m v^{2}$
$\Rightarrow(K E) f=10 \times 10 \times 1.5+\frac{1}{2} \times 10 \times(1)^{2}$
$=150+5=155 \mathrm{~J}$.
10. (3)
11. (3) Centre of mass of a system lies towards the part of the system, having bigger mass. In the above diagram, lower part is heavier, hence COM of the system lies below the horizontal diameter.
12. (4)
13. (1) Given, radius $r=2.5 \times 10^{-5} \mathrm{~m}$
surface tension $(S)=7.28 \times 10^{-2} \mathrm{~N} / \mathrm{m}$
Angle of contact (θ) $=0^{\circ}$
The maximum height to which sap can rise in trees through capillary action is given by $h=\frac{2 S \cos \theta}{r \rho g}$ where $S=$ surface tension, $\rho=$ Density, $r=$ Radius $=\frac{2 \times 7.28 \times 10^{-2} \times \cos 0^{\circ}}{2.5 \times 10^{-5} \times 1 \times 10^{3} \times 9.8}=0.6 \mathrm{~m}$.
This is the maximum height to which the sap can rise due to surface tension. Since, many tress have heights much than this, capillary action alone cannot account for the rise of water in all trees.
14. (4) Angle between M and B does not change on rotating the loop by 30°. Hence work done is zero.
15. (1) Amount of sweat evaporated / minute
$=\frac{\text { Sweat produced } / \text { minute }}{}$
$=\overline{\text { No. of calories required for evaporation } / \mathrm{kg}}$
$=\frac{\text { Amount of heat produced per minute in jogging }}{\text { Latent heat (in cal } / \mathrm{kg} \text {) }}$
$=\frac{14.5 \times 10^{3}}{580 \times 10^{3}}=\frac{145}{580}=0.025 \mathrm{~kg}$.
16. (3)
17. (3)
18. (2)
19. (3)
20. (2)
21. (3) Due to presence of moisture density of air decreases.

We know that speed of sound in air is given by
$\mathrm{v}=\sqrt{\frac{\gamma p}{\rho}}$
For air γ and p are constants.
$\mathrm{v} \propto \frac{1}{\sqrt{\rho}}$, where ρ is density of air.
$\frac{\mathrm{v}_{2}}{\mathrm{v}_{1}}=\sqrt{\frac{\rho_{2}}{\rho_{1}}}$
where ρ_{1} is density of dry air and ρ_{2} is density of moist air.

As $\rho_{2}<\rho_{1}=\frac{\mathrm{v}_{2}}{\mathrm{v}_{1}}>1 \Rightarrow \mathrm{v}_{2}=\mathrm{v}_{1}$.
Hence, speed of sound wave in air increases with increase in humidity.
22. (2)
23. (1) Consider the diagram where an ideal fluid is flowing through a pipe.

As given
$d_{1}=$ diameter of 1st point 2.5
$d_{2}=$ diameter of 2 nd point 3.75
Applying equation of continuity for cross-sections A_{1} and A_{2}.
$\Rightarrow A_{1} \mathrm{v}_{1}=A_{2} \mathrm{v}_{2}$
$\Rightarrow \frac{\mathrm{v}_{1}}{\mathrm{v}_{2}}=\frac{A_{2}}{A_{1}}=\frac{\pi\left(r_{2}^{2}\right)^{2}}{\pi\left(r_{1}^{2}\right)^{2}}=\left(\frac{r_{2}}{r_{1}}\right)^{2}$

$$
=\left(\frac{3.75 / 2}{2.5 / 2}\right)^{2}=\left(\frac{3.75}{2.5}\right)^{2}=\frac{9}{4}\left[\begin{array}{l}
r_{2}=\frac{d_{2}}{2} \\
r_{1}=\frac{d_{1}}{2}
\end{array}\right] .
$$

24. (4) The angle between velocity and magnetic field will be zero. Hence electron will not experience any force.
25. (2) $\beta_{\text {central }}=\frac{2 \lambda D}{a} \Rightarrow a=\frac{2 \lambda D}{\beta_{\text {central }}}$.
26. (2) Smaller gulab jamuns are having least surface area hence, they will be heated first. As in case of smaller gulab jamun heat radiates will be less.
Similarly, smaller pizzas are heated before bigger ones because they are of small surface areas.
27. (3) As the body is falling freely under gravity, the
potential energy decreases and kinetic energy increases but total mechanical energy ($\mathrm{PE}+\mathrm{KE}$) of the body and earth system will be constant as external force on the system is zero.
28. (2)
29. (4) Given, $A=1.0 \mathrm{~m} \pm 0.2 \mathrm{~m}, B=2.0 \pm+0.2 \mathrm{~m}$.

Let, $Y=\sqrt{A B}=\sqrt{(1.0)(2.0)}=1.414 \mathrm{~m}$
Rounding off to two significant digit $Y=1.4 \mathrm{~m}$
$\frac{\Delta Y}{Y}=\frac{1}{2}\left[\frac{\Delta A}{A}+\frac{\Delta B}{B}\right]=\left[\frac{0.2}{1.0}+\frac{0.2}{2.0}\right]=\frac{0.6}{2 \times 2.0}$
$\Rightarrow \Delta Y=\frac{0.6}{2 \times 2.0}=\frac{0.6 \times 1.4}{2 \times 20}=0.212$
Rounding off to one significant digit $\Delta Y=0.2 \mathrm{~m}$
Thus, correct value for
$=\sqrt{A D}=r+\Delta r=1.4 \pm 0.2 \mathrm{~m}$.
30. (1)
31. (2) In the given diagram, when the small piece Q removed and glued to the centre of the plate, the mass comes closer to the z-axis, hence, moment of inertia decreases.
32. (4) $\lambda=\frac{h}{p}=\frac{h}{m \sqrt{g H}}$.
33. (1) As the lift is coming in downward direction displacement will be negative. We have to see whether the motion is acceleration or retarding.
We know that due to downward motion displacement will be negative. When the lift reaches 4th floor is about to stop hence, motion is retarding in nature hence, $x<0, a>0$

As displacement is in negative direction, velocity will also be negative i.e., $\mathrm{v}<0$.
This can be shown on the adjacent graph.
34. (2)
35. (1) Let equation of an SHM is represented by $y=a \sin \omega t$
$\mathrm{v}=\frac{d y}{d t}=a \omega \cos \omega t$
$\Rightarrow(\mathrm{v})_{\text {max }}=a \omega=30$
Acceleration $(A)=\frac{d x^{2}}{d t^{2}}=a \omega^{2} \sin \omega t$
$A_{\max }=a \omega^{2}=60$
Eqs. (i) and (ii), we get $\omega(\omega a)=60 \Rightarrow \omega(30)=60$
$\Rightarrow \omega=2 \mathrm{rad} / \mathrm{sec}$
$\Rightarrow \frac{2 \pi}{T}=2 \mathrm{rad} / \mathrm{sec} \Rightarrow T=\pi \mathrm{sec}$.

SECTION - B (Attempt Any 10 Questions)

36. (4) Gravitational mass of proton is equivalent to its inertial mass and is independent of presence neighbouring heavy objects.
$37 \quad$ (2)
37. (2) Mass $m=2.5 \mathrm{~kg}, \mu=$ mass per unit length
$=\frac{m}{l}=\frac{2.5 \mathrm{~kg}}{20}=\frac{125}{10}=0.125 \mathrm{~kg} / \mathrm{m}$
Speed $\mathrm{v}=\sqrt{\frac{T}{\mu}}=\sqrt{\frac{200}{0.125}}$ [speed of transvers waves in any string]

$$
\begin{aligned}
& l=\mathrm{v} \times t \Rightarrow 20=\sqrt{\frac{200}{0.125}} \times t \\
& t=20 \times \sqrt{\frac{25 \times 5}{2 \times 10^{5}}} \\
& =20 \times \sqrt{25 \times \frac{1}{0.4 \times 10^{5}}}=20 \times 5 \sqrt{\frac{1}{4 \times 10^{4}}} \\
& =\frac{20 \times 5}{2 \times 10^{2}}=\frac{1}{2}=0.5 .
\end{aligned}
$$

39. (3) Consider the diagram in which a liquid column oscillates. In this case, restoring force acts on the liquid due to gravity. Acceleration of the liquid column, can be calculated in terms of restoring force.

Restoring force $f=$ Weight of liquid column fheight $2 y$
$\Rightarrow f=-(A \times 2 y \times \rho) \times g=-2 A \rho g y$
$[\because \eta=\rho v]$
$\Rightarrow f \propto-y \Rightarrow$ Motion is SHM with force constant
$k=2 A \rho g$
\Rightarrow Time period
$T=2 \pi \sqrt{\frac{m}{k}}=2 \pi \sqrt{\frac{A \times 2 h \times \rho}{2 A \rho g}}=2 \pi \sqrt{\frac{h}{g}}$
$T=2 \pi \sqrt{\frac{l}{g}}$, where $l=h$
Which is independent of the density of the liquid.
40. (3)
41. (4) We know for an ideal gas, $p V=n R T$
where, $n=$ number of moles, $p=$ Pressure,
$V=$ Volume $R=$ Gas constant, $T=$ temperature
$=\frac{p V}{R T}$
As number of moles of the gas remains fixed, hence, we can write

$$
\frac{p_{1} V_{1}}{R T_{1}}=\frac{p_{2} V_{2}}{R T_{2}} \Rightarrow p_{2}=\left(p_{1} V_{1}\right) \frac{T_{2}}{V_{2} T_{1}}
$$

$=\frac{(p)(V)(1.1 T)}{(1.05) V(T)}\left[\mathrm{p}_{1}=\mathrm{p}, \mathrm{V}_{2}=1.05 \mathrm{~V}\right.$ and $\left.\mathrm{T}_{2}=1.1 \mathrm{~T}\right]$
$=p \times \frac{1.1}{1.05}$
$=p \times(1.0476)=1.05 p$.
Hence, final pressure p_{2} lies between p and $1.1 p$.
42. (1)
43. (3) Let A moves up the plane frictional force on A will be downward as shown.

When A just starts moving up
$m g \sin \theta_{1}+f=m g \sin \theta_{2}$
$\Rightarrow m g \sin \theta_{1}+\mu m g \cos \theta_{1}=m g \sin \theta_{2}$
$\Rightarrow \mu=\frac{\sin \theta_{2}-\sin \theta_{1}}{\cos \theta_{1}}$
When A moves upwards
$f=m g \sin \theta_{2}-m g \sin \theta_{1}>0$
$\Rightarrow \sin \theta_{2}>\sin \theta_{1} \Rightarrow \theta_{2}>\theta_{1}$.
44. (3)
45. (4) Given, fundamental quantities are momentum (p), area (A) and time (T).
We can write energy E as
$E \propto p^{a} A^{b} T^{c}$
$E=k p^{a} A^{b} T^{c}$
where k is dimensionless constant of proportionally. Dimensions of
$E=[E]=\left[M L^{2} T^{-2}\right]$ and $[p]=\left[M L T^{-1}\right]$
$[A]=\left[L^{2}\right]$
$[T]=[T]$

$$
\begin{aligned}
{[E] } & =[k][p]^{a}[A]^{b}[T]^{c} \\
& =M^{a} L^{2 b+a} T^{-a+c}
\end{aligned}
$$

By principle of homogeneity of dimensions,
$a=1,2 b+a=2$
$\Rightarrow 2 b+1=2$
$\Rightarrow b=1 / 2-a+c=-2$
$c=-2+a=-2+1=-1$
Hence, $E=p A^{1 / 2} T^{-1}$.
46. (4) Let the radius of the sphere is R. As the temperature increases radius of the sphere increases as shown.

Original volume $V_{0}=\frac{4}{3} \pi R^{3}$
Coefficient of linear expansion $=\alpha$
\therefore Coefficient of volume expansion $=3 \alpha$
$\therefore \frac{1 d V}{V d T}=3 \alpha \Rightarrow d V=3 V \alpha d t \Rightarrow 4 \pi R^{3} \alpha \Delta T$
= increase in the volume.
47. (3) Consider the adjacent diagram when M_{1} comes in contact with the spring, M_{1} is retarded by the spring force and M_{2} is accelerated by the spring force.
(1) The spring will continue to compress until the two blocks acquire common velocity.
(2) As surface are frictionless momentum of the system will be conserved
(3) If spring is massless whole energy of M_{1} will be imparted to M_{2} and M_{1} will be at rest, then
(4) Collision is inelastic, even if friction is not involved.

48. (1) Given, mass $=m=5 \mathrm{~kg}$, Radius $=1 \mathrm{~m}=R$

Revolution per minute $\omega=300 \mathrm{rev} / \mathrm{min}$

$$
\begin{aligned}
& =(300 \times 2 \pi) \mathrm{rad} / \mathrm{min} \\
& =(300 \times 2 \times 3.14) \mathrm{rad} / \mathrm{min} \\
& =(300 \times 2 \times 3.14) \mathrm{rad} / 60 \mathrm{~s} \\
& =\frac{300 \times 2 \times 3.14}{60} \mathrm{rad} / \mathrm{s}=10 \pi \mathrm{rad} / \mathrm{s}
\end{aligned}
$$

\Rightarrow Linear speed $=\mathrm{v}=\omega R$

$$
=\left(\frac{300 \times 2 \pi}{60}\right)(1)=10 \pi \mathrm{~m} / \mathrm{s}
$$

$K E=\frac{1}{2} m \mathrm{v}^{2}$
$K E=\frac{1}{2} \times 5 \times(10 \pi)^{2}$
$K E=100 \pi^{2} \times 5 \times \frac{1}{2}=250 \pi^{2} J$.
49. (2) We know that Young's modulus
$Y=\frac{\text { Stress }}{\text { Strain }}=\frac{F / A}{\Delta L / L}=\frac{F}{A} \times \frac{L}{\Delta L}$
$=\frac{F}{\pi(D / 2)^{2}} \times \frac{L}{\Delta L}=\frac{4 F L}{\pi D^{2} \Delta L}$
$\Rightarrow D^{2}=\frac{4 F L}{\pi \Delta L Y} \Rightarrow D=\sqrt{\frac{4 F L}{\pi \Delta L Y}}$
As F and are $\frac{L}{\Delta L}$ constants.
Hence, $D \propto \sqrt{\frac{1}{Y}}$
Now, we can find ratio as $\frac{D_{\text {copper }}}{D_{\text {iron }}}=\sqrt{\frac{Y_{\text {iron }}}{Y_{\text {copper }}}}$.
50. (1) As no external torque acts on the system, angular momentum should be conserved.

Hence $I \omega=$ constant \qquad
where, I is moment of inertia of the system and ω is angular velocity of the system.
$I_{1} \omega_{1}=I_{2} \omega_{2}$
(where ω_{1} and ω_{2} are angular velocities before and after jumping)
$\Rightarrow I \omega=\frac{I}{2} \times \omega_{2}$
(as mass reduced to half, hence, moment of inertia also reduced to half)
$\Rightarrow \omega_{2}=2 \omega$.

CHEMISTRY

SECTION - A (35 Questions)

51. (2) $+I$-effect decreases the stability of carbon anion. Since, $\left(\mathrm{CH}_{3}\right)$ group has $+I$-effect, therefore, it intensifies the negative charge and hence destabilises (A) relative to (B). sp hybridised carbanion is more stabilised than sp^{3}

Hence, $\mathrm{B}>\mathrm{A}>\mathrm{C}$
52. (1) $+800 \&+640$
53. (4) The transition metals exhibit higher enthalpies of atomisation due to strong interatomic interaction arises because of having large number of unpaired electrons in their atoms.
54. (1)

Species	Conjugate acid	Conjugate base
HCO_{3}^{-}	$\mathrm{H}_{2} \mathrm{CO}_{3}$	CO_{3}^{2-}
HSO_{4}^{-}	$\mathrm{H}_{2} \mathrm{SO}_{4}$	SO_{4}^{2-}
NH_{3}	NH_{4}^{+}	NH_{2}^{-}
$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{H}_{3} \mathrm{O}^{+}$	OH^{-}

55. (3) Sucrose (cane sugar) is a disaccharide. One molecule of sucrose on hydrolysis g one molecule of glucose and one molecule of fructose.

$$
\underset{\text { Cane sugar }}{\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{11}} \xrightarrow[\mathrm{H}^{+}]{\mathrm{H}_{2} \mathrm{O}} \underset{\text { D(}+ \text {) glucose }}{\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}+\underset{\text { D }(-) \text { fructose }}{\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}
$$

Note:- Sucrose is a dextro-rotatory sugar on hydrolysis produces a laevorotatory mixture So, known as invert sugar. Sucrose is a non-reducing sugar while maltose and lactose are reducing sugar.
56. (4) $\mathrm{Br}_{2} \rightarrow \mathrm{BrO}_{3}^{-}$

For Br_{2}, oxidation number $=0$
For BrO_{3}^{-}, oxidation number, $\mathrm{x}+(-6)=-1$ $\Rightarrow \mathrm{x}=+5$
57. (1) Electronegativity of $\mathrm{Cl}, \mathrm{Br}, \mathrm{C}$ and Mg follows the order $\mathrm{Cl}>\mathrm{Br}>\mathrm{C}>\mathrm{Mg}$
$* \mathrm{CH}_{3} \rightarrow \mathrm{CH}_{2} \rightarrow \mathrm{Cl}$
($-I$-effect)
$* \mathrm{CH}_{3} \leftarrow \mathrm{CH}_{2} \leftarrow \mathrm{Mg}^{+} \mathrm{Cl}^{-}$
$* \mathrm{CH}_{3} \rightarrow \mathrm{CH}_{2} \rightarrow \mathrm{Br}$
(-I -effect)

* $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
($+I$-effect)
- effect of $\mathrm{Cl}>\mathrm{Br}$.

Hence, $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{Cl}$ has the greatest positive charge.
58. (2) $\mathrm{HClO}_{3} \rightarrow \stackrel{+}{\mathrm{HClO}}_{4}$
(Oxidation)
$\stackrel{-3}{\mathrm{NH}_{4}^{+}} \rightarrow \stackrel{-3}{\mathrm{NH}_{3}}$
(None)
$\stackrel{-4}{\mathrm{NO}_{2}} \rightarrow \stackrel{+4}{\mathrm{~N}_{2}} \mathrm{O}_{2}$
(None)
$\stackrel{+4}{\mathrm{HSO}_{3}^{-}} \rightarrow \stackrel{+6}{\mathrm{SO}_{4}^{2-}}$
(Oxidation)
$\mathrm{H}_{2}{ }^{-1} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2}{ }_{\mathrm{O}}{ }^{-2}$
(Reduction)
59. (1) (p) At anode : oxidation takes place.
(q) At cathode : reduction takes place.
(r) Salt bridge for migration of ions
(s) Electrons flow from anode to cathode.
(t) Current flows from cathode to anode.
60. (2) A and D
61. (3) Hexane $+\mathrm{CO}_{2}$
62. (4) Hypo solution $\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right)$ is used in photography to remove the unaffected AgBr in the form of soluble complex.
$\mathrm{AgBr}+\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \rightarrow \mathrm{Na}_{3}\left[\mathrm{Ag}\left(\mathrm{S}_{2} \mathrm{O}_{3}\right)_{2}\right]+2 \mathrm{NaBr}$
Sodium argentothiosulphate
63. (3) Solubility changes with temperature. A plant cell shrinks in hypertonic solution. Relative lowering of vapour pressure is a colligative property.
64. (1)

	Hydrocarbons	Boiling point	
A.	n-pentane	309 K due to no branch	
B.	iso-pentane	301 K due to one branch	
C.	neo-pentane	282.5 K due to two branches	

65. (3) KCl undergoes dissociation in solution, hence observed molar mass will be lower. Experimentally determined molar mass can be higher or lower depending upon whether solute undergoes dissociation or association.
66. (4) Lanthanumhydroxide is more basic than luteium hydroxide since the basicity decreases in the period. Atomic radius of Zr and Hf are same because of lanthanide contraction
67. (2) Cations, total charge, anions, ions, oxidation
68. (1) Homolysis process require sunlight, U.V light or high temp. to form Cl radicals.
69.

70. (2) A-(iii), B-(iv), C-(ii), D-(i)
71. (1) Molarity
$=\frac{\text { Wt. of solute }}{\text { Mol. wt. of solute }} \times \frac{1000}{\text { Volumeofsoln. }(\mathrm{mL})}$
$=\frac{49}{98} \times \frac{1000}{250}=2 \mathrm{M}$
72. (2) ${ }^{\mathrm{In}}{ }_{38}^{88} \mathrm{Sr}$, Atomic number $=$ No. of protons

$$
=\text { No. of electrons }=38 .
$$

Atomic mass $=88$
Number of neutrons $=88-38=50$
73. (3) Ethanal $\left(\mathrm{CH}_{3} \mathrm{CHO}\right)$ is an oxidised product of ethanol. Pyridinium chlorochromate $\left.\left(\mathrm{C}_{5} \mathrm{H}_{5} \stackrel{+}{\mathrm{N}} \mathrm{HCl} \overline{\mathrm{Cr}}_{\mathrm{O}}^{3}\right)^{\prime}\right)$ oxidises primary alcohols to aldehydes. Strong oxidising agents such as KMnO_{4} are used for getting carboxylic acid from alcohols. The oxidation process can be stopped at the reagent of pyridinium chlorochromate and pyridinium dichromate $\left[\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{NH}_{2}\right)^{2+} \mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}\right]$ in anhydrous medium are used as the oxidising agent. So, the correect option is (3).

74. (3) Assertion is correct but reason is wrong statement.
Correct Reason This reaction proceeds through $\mathrm{S}_{\mathrm{N}} 2$ mechanism, in which-OH ion attacks at 180° to the halogen atom of 2-bromooctane which leads to the inversion of configuration.
75. (1) Triangular planar
76. (3) $\mathrm{O}_{2}, \mathrm{~B}_{2}$
77. (1) (i) 4 p , (ii) 4 s , (iii) 3d, (iv) 3 p

Ther order of increasing energy
(iv) $<$ (ii) $<$ (iii) $<$ (i)
78. (2) For exothermic reactions, $H_{R}>H_{p}$, hence ΔH is negative
79. (3) Iodoform test is used to test presence of $-\mathrm{COCH}_{3}$ group which is converted into -COOH group.
The reaction is shown as

80. (4) Source of nitrogen in Gabriel phthalimide synthesis is potassium phthalimide.

81. (4) Ionisation enthalpy of an atom is always negative.
82. (1) In Wilkinson's catalyst-(a homogenous catalyst), $\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{3} \mathrm{RhCl}, \mathrm{Rh}$ is dsp^{2} hybridised giving a square planar shape to the compound and is in +1 oxidation state.
83. (4) (A) \rightarrow (iii), (B) \rightarrow (iv), (C) \rightarrow (i), (D) \rightarrow (ii)
84. (1) I and IV statements are correct.
85. (4) In option (4) a carbon with double bond has two same functional groups $\left(\mathrm{CH}_{3}\right)$ attached. The rotation around carbon will not produce a new compound. Hence, geometrical isomerism is not possible.

SECTION - B (Attempt Any 10 Questions)

86. (2) $\mathrm{k}=\frac{2.303}{\left(t_{2}-t_{1}\right)} \log \frac{\left[\mathrm{A}_{1}\right]}{\left[\mathrm{A}_{2}\right]}$
$\mathrm{k}=\frac{2.303}{(1600-800)} \log \frac{1.45}{0.88}=\frac{2.303}{800} \times 0.2169$
$=6.24 \times 10^{-4} \mathrm{~s}^{-1}$
87. (3)

88. (2) (ii), (iii) \& (iv)
89. (1) $\mathrm{NH}_{2}-\mathrm{Hg}-\mathrm{O}-\mathrm{Hg}-\mathrm{I}$
90. (3) $\frac{0.693}{t_{1 / 2}}=\frac{2.303}{t} \log \frac{a}{a-x}$
$\frac{0.693}{10}=\frac{2.303}{100} \log \frac{100}{100-\mathrm{x}}$
$\Rightarrow \mathrm{x}=99.9 \%$
91. (2) $\mathrm{Ph}-\mathrm{CH}_{2}-\mathrm{MgI} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{Ph}-\mathrm{CH}_{3}+\mathrm{Mg}(\mathrm{OH}) \mathrm{I}$
92. (3) Iron coated with zinc does not get rusted even if cracks appear on the surface because Zn will take part in redox reaction not Fe as Zn in more reactive than Fe . If iron is coated with tin and cracks appear on the surface, Fe will take part in redox reaction because Sn is less reactive than Fe .
93. (1) Both A and R are correct and R is the correct explanation of A .

When two or more compounds differ in the position of subsituent atom or functional group on the carbon skeleton then it is position isomerism. Double bond is a functional group whose position varies.
94. (2) $\mathrm{K}=\mathrm{k}_{1} \times \mathrm{k}_{2}=\left(6.8 \times 10^{-3}\right) \times\left(1.6 \times 10^{-3}\right)$ $=1.08 \times 10^{-5}$
95. (1) $\mathrm{MgCl}_{2} \rightleftharpoons \mathrm{Mg}^{2+}+2 \mathrm{Cl}^{-}, i=3$
$\Delta \mathrm{T}_{\mathrm{b}}=i \mathrm{~K}_{\mathrm{b}} \mathrm{m}=3 \times 0.52 \times \frac{9.43}{94.3 \times 1}=0.156$
96. (4) The correct increasing order of basic strength is as follows
II $<$ IV $<$ I $<$ III
Greater the electron density towards ring, greater will be its basic strength. Electron withdrawing group decreases basic strength while electron donating group increase basic strength.
97. (1) A and R both are correct, and R is the correct explanation ofA.
98. (4)

Element	\%	No. of moles	Molar ratio
P	27.3	$27.3 / 12=2.27$	1
Q	72.7	$72.7 / 16=4.54$	2

Empirical formula $=\mathrm{PQ}_{2}$
99. (2) Chemical reaction can be shown as

(i) BH_{3}
$\xrightarrow[\substack{\text { (Hydrocarbon } \\ \text { Oxidation) }}]{\text { (ii) } \mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{OH} \Theta} \underset{\substack{\ominus \\ \text { Propan-1-ol }}}{\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{OH}}$
Thus, $\mathrm{CH}_{3} \mathrm{CH}-\mathrm{OH}$ and $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2} \mathrm{OH}$ are $\stackrel{\stackrel{C}{C}}{\mathrm{C}} \mathrm{H}_{3}$
positional isomers.
Hence, option (2) is correct.
100. (1) sp^{3}, tetrahedral

BOTANY

Section - A (35 Questions)

101. (3) (NCERT XII, Pg 107, based on Figure 6.8)
102. (4) [NCERT class XI,Page 247, (Conceptual) Point 15.4.1 (Second paragraph)]
103. (2) [NCERT class XI exemplar, Question number 05]
104. (2) [NCERT Exemplar problems - XI page No. 22; Q.No.7]
105. (4) (NCERT XI Pg.227, Intro Part)
106. (3) (NCERT XI Pg.235, 14.6 Last line)
107. (3) (Exemplar $11^{\text {th }}$ SAT Questions.3)
108. (3) (NCERT $11^{\text {th }}$, Living World, Exemplar)
109. (3) (NCERT XII, Pg 84, based on Figure 5.11)
110. (2) (NCERT 12 ${ }^{\text {th }}$, SRFP, Exemplar)
111. (1) (11th NCERT exercises Page no. 141)
112. (1) (NCERT 12 ${ }^{\text {th }}$, SRFP, Exemplar)
113. (2) (NCERT 12 ${ }^{\text {th }}$, SRFP, Exemplar)
114. (4) (NCERT XI - conceptual - page no. 223, $13.10 .2,2^{\text {nd }}$ paragraph)
115. (3) (NCERT XI - Page no. 216, 13.7.2, 1 and page no. 219, $2^{\text {nd }}$ paragraph)
116. (2) [NCERT Exemplar problems - XI page No. 22; Q.No.9]
117. (4) (NCERT XII, Pg 89, Based on colourblindness (Sex linkage))
118. (4) (11th NCERT EXEMPLAR, page no. 40)
119. (2) (11th NCERT EXEMPLAR, page no. 39)
120. (3) [NCERT exemplar Class XI, Question number 08]
121. (3) (Exemplar $11^{\text {th }}$ Question No.5)
122. (3)(NCERT XII, Pg 120, Salient Features of Human Genome)
123. (4) (NCERT XII, Pg 99, based on Packaging of DNA Helix)
124. (4) (NCERT XII, 115, para 3, line 1)
125. (3) (Exemplar $11^{\text {th }}$ SAT Questions.5th)
126. (3) (Exemplar $12^{\text {th }}$ Question No.07)
127. (2) (NCERT 11 ${ }^{\text {th }}$, Biological Classification, Exemplar)
128. (3) (NCERT 11 ${ }^{\text {th }}$, Biological Classification, Summary)
129. (1) (NCERT11th, Biological Classification, Exercise based)
130. (4) (11th NCERT EXEMPLAR/ PAGE NO. 50)
131. (1) [NCERT Exemplar problems - XI page No. 22; Q.No.6]
132. (1) (NCERT XII, Pg 117, Para 2, Line 1)
133. (1) (NCERT XII, $\operatorname{Pg} 71$, based on INHERITA NCE OF ONE GENE)
134. (3) (NCERT XII, Pg 80, based on Law of Independent Assortment and Linkage)
135. (4) (NCERT XII, Pg 78, based on para 2)

SECTION - B (Attempt Any 10 Questions)

136. (3) [NCERT Class XI, Page no. 92, Line no. 07-09 (Conceptual)]
137. (2) [NCERT exemplar Class XI,, Question number 01]
138. (2) (NCERT 12 ${ }^{\text {th }}$, SRFP, Exercise)
139. (3) (11th NCERT EXEMPLAR/ PAGE NO. 50)
140. (4) (NCERT XI Pg.228, 14.2 Last Para, $6^{\text {th }}$ line)
141. (4) (11 ${ }^{\text {th }}$ PK NCERT Page no 44 Exercises question bank conceptual)
142. (4) (NCERT-XII, Pg. 118)
143. (1) (NCERT XI - page no. 212, fig. 13.5 and $1^{\text {st }}$ paragraph, page no. 214, fig. 13.7)
144. (3) (NCERT $11^{\text {th }}$, Living World, Exemplar)
145. (4) (NCERT 11 ${ }^{\text {th }}$, Biological Classification, Exemplar)
146. (4) (NCERT-XII, Pg. 115, Para 2, Last $2^{\text {nd }}$ line)
147. (2) (Exemplar $12^{\text {th }}$ Question No.06)
148. (3) (11th NCERT EXERCISES Page no. 141)
149. (2) (11th NCERT EXEMPLAR / PAGE NO. 51)
150. (2) [NCERT Exemplar problems - XI page No. 23; Q.No.10]

ZOOLOGY

Section - A (35 Questions)

151. (3) (NCERT P.No.287, Disorders)
152. (3) (Exemplar $12^{\text {th }}$ Question No.09)
153. (2) [NCERT P.No. $310,4^{\text {th }}$ Line]
154. (3) [NCERT P.No.321, Last Para]
155. (4) (NCERT $11^{\text {th }}$ exemplar)
156. (2) (NCERT P.No.274, Transport of oxygen)
157. (1) (NCERT 12 ${ }^{\text {th }}$ summary, p.no 55)
158. (4) (NCERT $11^{\text {th }}$ exemplar frog)
159. (1) (NCERT P.No.271, Respiratory volume)
160. (2) (NCERT 12 ${ }^{\text {th }}$, Evolution, Exemplar)
161. (3) (NCERT $12^{\text {th }}$ exemplar)
162. (1) (NCERT $11^{\text {th }}$ page no 122, EXERCISE)
163. (4) [NCERT P.No.316, 21.1 AND 21.2]
164. (1) [NCERT P.No.319, Fig. 21.3]
165. (4) (NCERT XI Page No. 50 Phylum ctenophora)
166. (1) (NCERT XI Page No. 338; 4th paragraph)
167. (1) (NCERT 11 ${ }^{\text {th }}$, Biomolecule, Exemplar)
168. (4) (NCERT P.No. 189)
169. (2) (NCERT XI Page No. 54; Phylumechinodermata)
170. (2) (NCERT $11^{\text {th }}$ exemplar cockroach)
171. (1) (NCERT 11 ${ }^{\text {th }}$, Biomolecule, Exemplar)
172. (1) (NCERT 12 ${ }^{\text {th }}$, Evolution, Exercise based)
173. (4) (NCERT 12 ${ }^{\text {th }}$, Evolution, Summary)
174. (4) (12th NCERT EXEMPLAR / PAGE NO. 70)
175. (3) (12 ${ }^{\text {th }}$ NCERT ecology $1^{\text {st }}$ chapter, exponential equation- $\mathrm{dN} / \mathrm{dt}=(\mathrm{b}-\mathrm{d}) \times \mathrm{N}$ Rate of change in population $=2015-2005=10$ Years $\mathrm{dN} / 10=(0.028-0.008)$
$\times 14=0.28 \times 10=2.8=$ Initial population 14
million
Total population $=2.8$ million +14 million $=16.8$ near about 17 million)
176. (4) (NCERT Page No. 146, Common diseases)
177. (1) (NCERT Page No. 157, Cancer)
178. (3) (Exemplar 12 ${ }^{\text {th }}$ Question No.08)
179. (2) (Page No. 297; 2nd line of 3rd paragraph)
180. (3) [NCERT P.No.302, $1^{\text {st }}$ para \& 303, $2^{\text {nd }}$ para Line]
181. (3) (12th NCERT EXEMPLAR / PAGE NO. 70)
182. (2) [NCERT P.No.310, Last Para]
183. (2) [NCERT P.No. 196 ,Para just above diagram]
184. (2) [NCERT P.No. 211 ,Gene therapy $2^{\text {nd }}$ para $2^{\text {nd }}$ line]
185. (3) (NCERT $12^{\text {th }}$ exemplar)

SECTION - B (Attempt Any 10 Questions)

186. (1) (NCERT 11 ${ }^{\text {th }}$, Biomolecule, Exemplar)
187. (2) (Exemplar 12 ${ }^{\text {th }}$ Question No.17)
188. (3) (NCERT $12^{\text {th }}$, Evolution, Exemplar)
189. (2) (Page No. 60, 3rd line)
190. (4) (NCERT XI Page No. 331; 5th line of 2 nd paragraph)
191. (4) [NCERT P.No.209, Pest Resistant plants]
192. (4) [NCERT P.No.321, $1^{\text {st }}$ para $20^{\text {th }}$ Line]
193. (3) (NCERT XI Page No. 291; 5th line of 2nd paragraph)
194. (1) [NCERT P.No.307, $9^{\text {th }}$ Line]
195. (1) (NCERT P.No. 273, Exchange of gases)
196. (2) (NCERT Page No. 138)
197. (1) (NCERT Page No. 155, AIDS)
198. (4) (NCERT $12^{\text {th }}$ exemplar)
199. (3) (NCERT 12th Exemplar)
200. (2) (11th NCERT Excercises / PAGE NO. 189)]
