S ANSWER KEY \& SOLUTION KEY FINAL ROUND - 10 (PCB) Dt.19.04.2024

PHYSICS

SECTION - A (35 Questions)

1. (1) $E=\sigma T^{4}=$ energy radiated per unit surface are per unit time by a black body
$\therefore \sigma=\left(\frac{E}{T^{4}}\right)=\left[\frac{M L^{2} T^{-2}}{L^{2} T \theta^{4}}\right]=\left[M T^{-3} \theta^{-4}\right]$
(2) $b=\lambda_{m} T$
$\therefore \quad[b]=[L \theta]$
(3) Emissive power is energy radiated per unit time per unit surface area.
$\therefore[E]=\left[\frac{M L^{2} T^{-2}}{L^{2} T}\right]=\left[M T^{-3}\right]$
(4) $H=\frac{d Q}{d t}=\frac{T D}{R}$
$\therefore R=\frac{T D}{(d Q / d t)}=\frac{\theta}{\left[M L^{2} T^{-2} / T\right]}$
$=\left[M^{-1} L^{-2} T^{3} \theta\right]$
2. (1) Mean free path $\lambda=\frac{1}{\sqrt{2} \pi d^{2} n}$
n : number of molecules/volume
d : Diameter of molecules
3. (1) $u_{x}=16 \cos 60^{\circ}=8 \mathrm{~m} / \mathrm{s}$

Time taken to reach the wall $=8 / 8=1 \mathrm{~s}$
Now, $u_{y}=16 \sin 60^{\circ}=8 \sqrt{3} \mathrm{~m} / \mathrm{s}$
$h=8 \sqrt{3} \times 1-\frac{1}{2} \times 10 \times 1=13.86-5=8.9 m$
04. (3) $P V^{\gamma}=P^{\prime}\left(\frac{V}{32}\right)^{\gamma}$
$P^{\prime}=(32)^{\gamma} P=\left(2^{5}\right)^{7 / 5} P=(2)^{7} P=128 P$.
05. (2) Electric field on the axis of a ring of radius R at a distance h from the centre,
$E=\frac{k Q h}{\left(h^{2}+R^{2}\right)^{3 / 2}}$

Condition: for maximum electric field $\frac{d E}{d h}=0$
$\Rightarrow \frac{d}{d h}\left[\frac{k Q h}{\left(R^{2}+h^{2}\right)^{3 / 2}}\right]=0$
By using the concept of maxima and minima we
get, $h=\frac{R}{\sqrt{2}}$
06. (4) Flux through surface
$A \phi_{A}=E \times \pi R^{2}$ and $\phi_{B}=-E \times \pi R^{2}$

Flux through curved surface
$C=\int \vec{E} \cdot \vec{d} s=\int E d s \cos 90^{\circ}=0$
\therefore Total flux through cylinder $=\phi_{A}+\phi_{B}+\phi_{C}=0$
07. (2) Volume $=A l=3 \Rightarrow A=\frac{3}{l}$

Now
$R=\rho \frac{l}{A} \Rightarrow 3=\frac{\rho \times l}{3 / l}=\frac{\rho l^{2}}{3} \Rightarrow l^{2}=\frac{9}{\rho}=\frac{3}{\sqrt{\rho}}$
08. (2) If the radius of circle is r, then $2 \pi r=L \Rightarrow r=\frac{L}{2 \pi}$

Area $=\pi r^{2}=\frac{\pi L^{2}}{4 \pi^{2}}=\frac{L^{2}}{4 \pi}$
Magnetic moment $=I A=\frac{I L^{2}}{4 \pi}$
09. (3) 20 vernier scale divisions are equivalent to 19

Main scale division
So 1 V.S.D. is equivalent to $\frac{19}{20}$ M.S.D.
Now least count = 1 M.S.D. -1 V.S.D.
$0.1 \mathrm{~mm}=1$ M.S.D. $-\frac{19}{20}$ M.S.D.
$\Rightarrow 0.1 \mathrm{~mm}=\frac{1}{20}$ M.S.D.
\Rightarrow M.S.D. $=2 \mathrm{~mm}$
10. (3) Here, $r=0,1 \mathrm{~m}, n=10 r p s, \mathrm{~B}=0.1 \mathrm{~T}$
$e=\frac{1}{2} B \omega r^{2}=\frac{1}{2} B(2 \pi n) r^{2}$
$=B \pi n r^{2}=0.1 \times \pi \times 10(0.1)^{2}=10^{-2} \pi$ volt
11. (2)
12. (4) Transition form $n=1$ to $n=3 \Delta E=12.1 \mathrm{eV}$.
13. (3)
14. (2) In forward bias $V_{P}>V_{N}$
15. (1) Here, Max. velocity, $V_{\max }=V_{0}=A \omega$

When $y=A / 2$, then velocity $V=$?
$V=\omega \sqrt{A^{2}-y^{2}}=\omega \sqrt{A^{2}-A^{2} / 4}$

$$
=\frac{\sqrt{3} \omega A}{2}=\frac{\sqrt{3} V_{0}}{2}
$$

16. (3) $y=0.5 \sin \left(\frac{2 \pi}{\lambda} 400 t-\frac{2 \pi}{\lambda} x\right)$
$\omega=\frac{2 \pi}{\lambda} 400$ and $k=\frac{2 \pi}{\lambda}$
Velocity of wave, $v=\frac{\omega}{k}=400 \mathrm{~m} / \mathrm{s}$
17. (2)
$x=n_{1} \beta_{1}=n_{2} \times \beta_{2} ; n_{2}=n_{1} \frac{\beta_{1}}{\beta_{2}}=n_{1} \times \frac{\lambda_{1}}{\lambda_{2}}=12 \times \frac{600}{400}=18$
18. (1) As width of central maxima $W=\frac{2 \lambda}{b}$.

So $W \propto \lambda \Rightarrow W^{\prime}=2 W$
19. (3) Real object and real image has to be there so (3) is correct graph.
20. (2) Let $v_{\max }$ be the maximum frequency of oscillation at which the block does not leave the platform. Then centrifugal force at extreme position is equal to weight of block
i.e., $M \omega^{2} a=M g$
or $4 \pi^{2} v_{\max }^{2} a=g \quad$ or $v_{\max }=\frac{1}{2 \pi} \sqrt{\frac{g}{a}}$.
21. (1) Gauss's theorem in magnetism establishes that magnetic monopoles do not exist.
22. (1) For no force on wire C, force on wire C due to wire $\mathrm{D}=$ force on wire C due to wire B
$\Rightarrow \frac{\mu_{0}}{4 \pi} \times \frac{2 \times 15 \times 5}{x}=l=\frac{\mu_{0}}{4 \pi} \times \frac{2 \times 5 \times 10}{(15-x)} \times l$
$\Rightarrow x=9 \mathrm{~cm}$
23. (1) $\rho=\frac{M}{V}=\frac{M}{L^{3}}$

Relative error in the measurement of density is
$\frac{\Delta \rho}{\rho}=\frac{\Delta M}{M}+3 \frac{\Delta L}{3}$

$$
=\frac{0.1}{10}+3 \times \frac{0.01}{0.1}=0.01+0.3=0.31
$$

24. (4) $\frac{Y_{A}}{Y_{B}}=\frac{\tan \theta_{A}}{\tan \theta_{B}}=\frac{\tan 60^{\circ}}{\tan 30^{\circ}}$

$$
=\frac{\sqrt{3}}{1 / \sqrt{3}}=3 \text { or } Y_{A}=3 Y_{B}
$$

25. (3)
26. (2) $U=-\frac{G M m}{r} ; K=\frac{G M m}{r}$ and $E=-\frac{G M m}{2 r}$.
27. (2)
28. (4)

29. (2) $\left(i_{d}\right)_{n e t}=i_{c}=i$
$i_{d}=\left[\frac{\left(i_{d}\right)_{n e t}}{A}\right] \frac{A}{2}=\frac{i}{2}$
30. (1) Starting from right end of figure.

$\frac{1}{C_{S}}=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=\frac{3}{3}=1 \quad$ or $C_{S}=1 \mu \mathrm{~F}$
$C_{P}=1+2=3 \mu \mathrm{~F}$ and so on.
Finally, the equivalent resistance between A and B is $C_{A B}$
or $\frac{1}{C_{A B}}=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1 \quad$ or $\quad C_{A B}=1 \mu \mathrm{~F}$
31. (3) $\mathrm{W}=\mathrm{Fs} \cos \theta$
$100=5(4) \cos \theta$
$\cos \theta=\frac{1}{2} \Rightarrow \theta=60^{\circ}$
32. (1) $f=300 \mathrm{rpm}=\frac{300}{60} \mathrm{rps}=5 \mathrm{rps}$

Hence, angular speed will be
$\omega=2 \pi f=2 \pi \times 5=10 \pi \mathrm{rad} \mathrm{s}^{-1}$
As we know that
$v=\omega R=\left(10 \pi s^{-1}\right)(1 m)=10 \pi \mathrm{~ms}^{-1}$
Kinetic energy,
$\mathrm{K}=\frac{1}{2} m v^{2}=\frac{1}{2} \times(5 \mathrm{~kg})\left(10 \pi m \mathrm{~s}^{-1}\right)^{2}$
33. (1)
34. (3) $\frac{2 \times M(L \sin 45)^{2}}{12}=\frac{M L^{2}}{12}$
35. (1)

SECTION - B (Attempt Any 10 Questions)

36. (1) $t=\alpha x^{2}+\beta x$ (differentiating w.r.t. time)
$\frac{d t}{d x}=2 \alpha x+\beta$
$\frac{1}{v}=2 \alpha x+\beta$ (differentiating w.r.t time)
$-\frac{1}{v^{2}} \frac{d v}{d t}=2 \alpha \frac{d x}{d t}$
$\frac{d v}{d t}=-2 \alpha v^{3}$
37. (4)
$P=\frac{V^{2}}{R}=$ so $\mathrm{R}=\frac{V^{2}}{P} \Rightarrow R_{1}=\frac{V^{2}}{100}$ and $R_{2}=R_{3}=\frac{V^{2}}{60}$
Now $W_{1}=\frac{(250)^{2}}{\left(R_{1}+R_{2}\right)^{2}} \cdot R_{1}, W_{2}=\frac{(250)^{2}}{\left(R_{1}+R_{2}\right)^{2}} \cdot R_{2}$ and
$W_{3}=\frac{(250)^{2}}{R_{3}}$
$W_{1}: W_{2}: W_{3}=15: 25: 64$ or $W_{1}<W_{2}<W_{3}$
38. (1) Velocity of transverse wave $v=\sqrt{\frac{T}{\mu}}$
$\mathrm{T}=$ tension in string
$\mu=$ linear mass density
At the time when car is at rest
$60=\sqrt{\frac{M g}{\mu}}$

In case when car is accelerating
$60.5=\sqrt{\frac{M\left(g^{2}+a^{2}\right)^{1 / 2}}{\mu}}$
$\Rightarrow \frac{60.5}{60}=\sqrt{\frac{\sqrt{g^{2}+a^{2}}}{g}}$
$\left(1+\frac{0.5}{60}\right)^{4}=\frac{g^{2}+a^{2}}{g^{2}}=1+\frac{2}{60}$
$\Rightarrow g^{2}+a^{2}=g^{2}+g^{2} \times \frac{2}{60}$
$a=g \sqrt{\frac{2}{60}}=\frac{g}{\sqrt{30}}$
39. (1) The cube is in equilibrium under the following three forces:

(a) Spring force $k x$, where $x=$ elongation of the spring
(b) Gravitational force
$W=$ weight of the cube $=m g$
(c) Buoyant force F_{B} (or upward thrust) imparted by the liquid on the cube given as
$F_{B}=V d g$
where $V=$ Volume of immersed portion of the cube For complete immersion
$V=$ Volume of cube
For equilibrium of the cube
$k x+F_{B}=m g$
$\therefore x=\frac{m g-F_{B}}{K}=\frac{m g-V d g}{K}$
where $v=m / D$
$\therefore x=\frac{m g}{K}\left[1-\frac{d}{D}\right]$
Hence, the correct answer is option (1).
40. (1) $[\mathrm{E}]=$ Energy $=\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}[m]=\right.$ mass $=[\mathrm{M}]$,
$[\mathrm{L}]=$ Angular momentum $=\left[\mathrm{ML}^{2} \mathrm{~T}^{-1}\right]$
$[\mathrm{G}]=$ Gravitational constant $=\left[\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right]$
Now substituting dimensions of above quantities
in $\frac{E L^{2}}{m^{5} G^{2}}=\frac{\left[M L^{2} T^{-2}\right] \times\left[M L^{2} T^{-1}\right]^{2}}{\left[M^{5}\right] \times\left[M^{-1} L^{3} T^{-2}\right]^{2}}=\left[M^{0} L^{0} T^{0}\right]$
i.e., the quantity should be angle.
41. (1)
42. (3) When a charged particle of charge q, mass m enters perpendicular to the magnetic induction \vec{B} of a magnetic field, it will experience a magnetic force
$\vec{F}=q(\vec{v} \times \vec{B})=q v B \sin 90^{\circ}=q v B$
that provides a centripetal acceleration v^{2} / r.
So, $q v B=\frac{m v^{2}}{r} \Rightarrow m v=q B r$
The de Broglie wavelength
$\lambda=\frac{h}{m v}=\frac{h}{q B r}$
$\frac{\lambda_{\alpha}}{\lambda_{p}}=\frac{q_{p} r_{p}}{q_{\alpha} r_{\alpha}}$
Since, $\frac{r_{\alpha}}{r_{p}}=1$ and $\frac{q_{\alpha}}{q_{p}}=2$
$\therefore \frac{\lambda_{\alpha}}{\lambda_{p}}=\frac{1}{2}$.
43. (3) Resonant frequency, $f_{r}=\frac{1}{2 \pi \sqrt{L C}}$
$f_{r} \times \frac{1}{\sqrt{C}}$
When another capacitor is added in series, C_{eq} decreases. So f_{r} increases.
44. (1)
45. (1) Due to friction, tension at all points on the thread is not alike its shown below.

Here, $\mathrm{T}_{1}-\mathrm{T}_{2}=f$, also $\mathrm{R}=\mathrm{T}_{1}+\mathrm{T}_{2}$
Given, $\mathrm{T}_{1}=8 \mathrm{~g}, \mathrm{~T}_{2}=6 \mathrm{~g}$
$\Rightarrow R=(8+6) g=14 \mathrm{~g}$
As, $f=\mathrm{T}_{1}-\mathrm{T}_{2}=8 \mathrm{~g}-6 \mathrm{~g}=2 \mathrm{~g}=20 \mathrm{~N}$
So statement I si correct but II is incorrect
46. (3) The rolling sphere has rotational as well as translational kinetic energy.
\therefore Kinetic energy $=\frac{1}{2} m u^{2}+\frac{1}{2} I \omega^{2}$
$=\frac{1}{2} m u^{2}+\frac{1}{2}\left(\frac{2}{5} m r^{2}\right) \omega^{2}=\frac{1}{2} m u^{2}+\frac{m u^{2}}{5}=\frac{7}{10} m u^{2}$
Potential energy $=$ kinetic energy
$\therefore m g h=\frac{7}{10} m u^{2}$ or $h=\frac{7 u^{2}}{10 g}$.
47. (1) $F_{1}=\frac{1}{4 \pi \varepsilon_{0}} \frac{q^{2}}{r^{2}}$ or $F_{2}=\frac{1}{4 \pi \varepsilon_{0} K} \frac{q^{2}}{R^{2}}$

As $F_{2}=F_{2}$, hence $\frac{q^{2}}{r^{2}}=\frac{1}{K} \frac{q^{2}}{R^{2}} \therefore R=r / \sqrt{K}$
48. (2)
49. (3) Bulb B_{1} dies out promptly, but bulb B_{2} does out with some delay. This is because of self induced emf across L, during decay.
50. (3) Binding energy of the electron in the innermost orbit $=40 \mathrm{keV}$. To dislodge the electron from this orbit, the bombarding electron must have an energy greater than 40 keV . Hence, the potential difference between cathode and the anticathode must be more than 40,000 volt to impart to the electron of the cathode ray an energy greater than 40 keV .

CHEMISTRY

SECTION - A (35 Questions)

51. (1) $\mathrm{PBr}_{3}, \mathrm{KCN}, \mathrm{H}_{3} \mathrm{O}^{+}$
52. (2) A-P, B-R, C-Q, D-S
53. (2) Read boron hydrides in our text book.
54. (1) For the reaction, $\mathrm{H}_{2} \mathrm{~S} \rightleftharpoons \mathrm{H}^{+}+\mathrm{HS}^{-}$

$$
\mathrm{K}_{\mathrm{a}_{1}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HS}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{~S}\right]}
$$

For the reaction, $\mathrm{HS}^{-} \rightleftharpoons \mathrm{H}^{+}+\mathrm{S}^{2-}$

$$
\mathrm{K}_{\mathrm{a}_{2}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{S}^{2-}\right]}{\left[\mathrm{HS}^{-}\right]}
$$

When, the above two reactions are added, their equilibrium constants are multiplied, thus

$$
\mathrm{K}_{\mathrm{a}_{3}}=\frac{\left[\mathrm{H}^{+}\right]^{2}\left[\mathrm{~S}^{2-}\right]}{\left[\mathrm{H}_{2} \mathrm{~S}\right]}=\mathrm{K}_{\mathrm{a}_{1}} \times \mathrm{K}_{\mathrm{a}_{2}}
$$

Hence, $\quad K_{a_{3}}=K_{a_{1}} \times K_{a_{2}}$
55. (1) (A)-(q); (B)-(t); (C)-(r); (D)-(s)
56. (3) If Assertion is True but the Reason is False

57. (1) Alkene gives less stable carbocation
58. (2) Silicic acid
59. (4) X gave depression corresponding to 2 mol of particles.
$\mathrm{X}=\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Br}_{2}\right] \mathrm{Cl}_{2} \mathrm{H}_{2} \mathrm{O} \rightleftharpoons$
$\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Br}_{2}\right]^{+} \mathrm{Cl}^{-}$
Y gave depression corresponding to 3 mol of particles.
$\mathrm{Y}=\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{Br}_{2} \rightleftharpoons\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right]^{2+}+2 \mathrm{Br}$
60. (1) As we know from elevation in boiling point that
$\Delta \mathrm{T}_{\mathrm{b}}=\mathrm{K}_{\mathrm{b}} \mathrm{m}$
$\mathrm{K}_{\mathrm{b}}=\frac{\Delta \mathrm{T}_{\mathrm{b}}}{\mathrm{m}}$
Unit of $K_{b}=\frac{\text { unit of } \Delta T_{b}}{\text { unit of } m}=\frac{K}{\text { molality }}$
$=\frac{\mathrm{K}}{\mathrm{mol} \mathrm{kg}^{-1}}=\mathrm{K} \mathrm{mol}^{-1} \mathrm{~kg}$
61. (4) All of these
62. (4)

In presence of strong ethylenediamine ligand the electrons get paired.

Thus inner orbital complex with no unpaired electrons.
63. (1) Amphoteric oxides react with alkalies as well as acids.
$\mathrm{V}_{2} \mathrm{O}_{5} \xrightarrow{\text { alkali }} \mathrm{VO}_{4}{ }^{3-}$
$\mathrm{V}_{2} \mathrm{O}_{5} \xrightarrow{\text { acid }} \mathrm{VO}_{4}^{+}$
$\mathrm{Cr}_{2} \mathrm{O}_{3} \xrightarrow{\text { acid }}\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$
$\mathrm{Cr}_{2} \mathrm{O}_{3} \xrightarrow{\text { alkali }}\left[\mathrm{CrO}_{2}\right]^{-}$
64. (1) When primary amine is treated with chloroform and alkali, a very bad smelling compound, called isocyanide or carbylamine is obtained. On the basis of the name of the product, the reaction is called carbylamines reaction.
$\mathrm{R}-\mathrm{NH}_{2}+\mathrm{CHCl}_{3}+\mathrm{KOH} \rightarrow \mathrm{RNC}+\mathrm{KCl}+$ $\mathrm{H}_{2} \mathrm{O}$
1° amine chloroform alkali isocyanide or carbylamine
65. (2) Rate $=k[A][B]^{2}$
66. (2) Characteristics of catalyst
(1) It catalyses the forward and backward reaction to the same extent as it decreases energy of activation hence, increases the rate of both the reactions.
(2) ΔG is a state function, hence it will depend on the initial reactants and final products only
(3) It doesn't alter equilibrium of reaction
(4) It provides an alternate mechanism by reducing activation energy between reactants and products.
67. (4) All the above
68. (2) Here, oxidation states of Fe changes from +2 to +3 . So, n-factor is 1 .
69. (3) Number of angular nodes $=l$

For $4^{\text {th }}$ orbital $(\mathrm{n}=4)$ and $l=2$ for d-orbitals
\therefore Number of angular nodes $=2$.
70. (2) The correct option is W (reversible) $<\mathrm{W}$ (irreversible). This is because are under the curve is always more in irreversible compression as can be seen from given figure.

71. (4) For comparing number of atoms, first we calculate the moles as all are monoatomic and hence, moles $\times \mathrm{N}_{\mathrm{A}}=$ number of atoms.
Moles of $4 \mathrm{~g} \mathrm{He}=\frac{4}{4}=1 \mathrm{~mol}$
$46 \mathrm{~g} \mathrm{Na}=\frac{46}{23}=2 \mathrm{~mol}$
$0.40 \mathrm{~g} \mathrm{Ca}=\frac{0.40}{40}=0.1 \mathrm{~mol}$
$12 \mathrm{~g} \mathrm{He}=\frac{12}{4}=3 \mathrm{~mol}$
Hence, 12 g He contains greatest number of atoms as it possesses maximum number of moles.
72. (2) Molecular mass of $\mathrm{CO}_{2}=1 \times 12+2 \times 16=$ 44 g
1 g molecule of CO_{2} contains 1 g atoms of carbon $\because 44 \mathrm{~g}$ of CO_{2} contain $\mathrm{C}=12 \mathrm{~g}$ atoms of carbon
$\therefore \%$ of C in $\mathrm{CO}_{2}=\frac{12}{44} \times 100=27.27 \%$
Hence, the mass per cent of carbon in CO_{2} is 27.27\%.
73. (2) As a tertiary carbocation will be formed i.e., $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}^{+}$here .
74. (3) $3>2>1>4$
75. (1) HF
76. (3) $\mathrm{AlF}_{3}, \mathrm{Be}_{2} \mathrm{C}$
77. (3) Assertion is false but Reason is true.

Combustion of 16 g of methane gives 36 g of water.

78. (2) The mass of electron is very small as compared to the mass of the neutron.
Mass of electron $=9.1 \times 10^{-31} \mathrm{~kg}$
Mass of neutron $=1.67 \times 10^{-27} \mathrm{~kg}$.
79. (1) i and ii
80. (1) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Br} \xrightarrow{\mathrm{KCN}} \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CN} \xrightarrow[\text { Reduction }]{\mathrm{LiAlH}_{4}}$ $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NH}_{2}$ i.e. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$

$$
\begin{aligned}
\therefore \mathrm{X} & =\mathrm{KCN} \\
\mathrm{Y} & =\mathrm{LiAlH}_{4}
\end{aligned}
$$

81. (4) $\mathrm{XeF}_{2}, \mathrm{ICl}_{3}$
82. (2) Statement- 1 is false, Statement- 2 is true
83. (3) $\operatorname{Cr}(Z=24)=1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5} 4 s^{1}$
$=[\mathrm{Ar}] 3 \mathrm{~d}^{5} 4 \mathrm{~s}^{1}$
$\mathrm{Fe}^{2+}(\mathrm{Z}=26)=1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 3 \mathrm{~d}^{6} 4 \mathrm{~s}^{0}$
$=[\mathrm{Ar}] 3 \mathrm{~d}^{6} 4 \mathrm{~s}^{0}$
$\mathrm{Ni}^{2+}(\mathrm{Z}=28)=1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 3 \mathrm{~d}^{8} 4 \mathrm{~s}^{0}$
$=[\mathrm{Ar}] 3 \mathrm{~d}^{8} 4 \mathrm{~s}^{0}$
$\mathrm{Cu}(\mathrm{Z}=29)=1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{1}$
$=[\mathrm{Ar}] 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{1}$
84. (3) Both statements are true. When a liquid crystallises, entropy decreases because in crystalline form the molecules are more ordered as compared to the liquid.
85. (2) Organic compound containing nitrogen is fused with a small piece of sodium metal to form NaCN .

$$
\mathrm{Na}+\underbrace{\mathrm{C}+\mathrm{N}}_{\begin{array}{c}
\text { from organic } \\
\text { compound }
\end{array}} \rightarrow \mathrm{NaCN}
$$

SECTION - B (Attempt Any 10 Questions)

86.

87. (1)

88. (4) Correct A : The bond enthalpies of the two O -H bonds in $\mathrm{H}-\mathrm{O}-\mathrm{H}$ are not equal.
Correct R : This is because electronic environment around O is not same after breaking one $\mathrm{O}-\mathrm{H}$ bond.
89. (4) Only 4
90. (4) Highest oxidation number of any transition element $=(\mathrm{n}-1) \mathrm{d}$ electrons +ns electrons. Therefore, large the number of electrons in the 3dorbitals, higher is the maximum oxidation number.
(1) $3 \mathrm{~d}^{1} 4 \mathrm{~s}^{2}=3$
(2) $3 \mathrm{~d}^{3} 4 \mathrm{~s}^{2}=3+2=5$
(3) $3 \mathrm{~d}^{5} 4 \mathrm{~s}^{1}=5+1=6$ and
(4) $3 \mathrm{~d}^{5} 4 \mathrm{~s}^{2}=5+2=7$

This option (4) is correct.
91. (1) For the reaction, $\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{HI}(\mathrm{g})$

$$
\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{HI}]}{\left[\mathrm{H}_{2}\right]^{1 / 2}\left[\mathrm{I}_{2}\right]^{1 / 2}}=5
$$

Thus, for the reaction, $2 \mathrm{HI}(\mathrm{g}) \rightleftharpoons \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})$
$\mathrm{K}_{\mathrm{c}_{1}}=\frac{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}{[\mathrm{HI}]^{2}}=\left(\frac{1}{\mathrm{~K}_{\mathrm{c}}}\right)^{2}=\left(\frac{1}{5}\right)^{2}=\frac{1}{25}=0.04$
92. (1)

93. (1) $\mathrm{A}-3-\mathrm{c} ; \mathrm{B}-4-\mathrm{b} ; \mathrm{C}-2-\mathrm{d} ; \mathrm{D}-1-\mathrm{a}$
94. (1) When salt is added to water to make the solution the vapour pressure of solution get decreases. This is due to decrease in surface covered by solvent molecule which lead to decrease in number of solvent molecule escaping from the surface corresponding to pure solvent.
Hence, vapour pressure also get reduces.
95. (1) While charging the lead storage battery the reaction occurring on cell is reversed and PbSO_{4} (s) on anode and cathode is converted into Pb and PbO_{2} respectively. Hence, option (1) is the correct choice.
96. (2) Linear polymerisation: Under suitable conditions, linear polymerisation of ethyne takes place to produce polyacetylene or polyethyne which is a high molecular weight polyene containing repeating units of $(\mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH})$ and can be represented as $-(\mathrm{CH}=\mathrm{CH}-\mathrm{CH}=$ CH)n-Under special conditions, this polymer conducts electricity.
Thin film of polyacetylene can be used as electrodes in batteries. These films are good conductors, lighter and cheaper than the metal conductors.
97. (1) (i)-(d), (ii)-(a), (iii)-(f), (iv)-(e), (v)-(c), (vi)(b)
98. (4) Vitamin B5 is also called as nicotinic acid. Nicotinic acid in the form of nicotinamide is found usually in all living cells in small amounts.
99. (1)

These are not enantiomers.
100. (2) As a result of lanthanoid contraction change in ionic raddii, on going from elements of 4 d to 5 d transition series, is very small. Thus chemical properties of 4 d and 5 d series of transition elements are similar.

BOTANY

Section - A (35 Ouestions)

101. (2) (NCERT XII, Pg 122, Para 2)
102. (2) (NCERT XII, Pg 120, 6.9.1 Salient Features of Human Genome)
103. (4) (11th Para 10.2.5, Page no. 166)
104. (4) (NCERT XII, Pg 90, Para 1, Line 4)
105. (2) (NCERT XII, Pg 83, Based on Linkage and Recombination Frequency)
106. (2) (NCERT XII, Pg 85- based on Sex determination)
107. (4) (NCERT XII, Pg 97, Based on Chargaff's rule)
108. (3) (NCERT XII, Page No. 101, Sub topic 6.2.1, line 1)
109. (3) [NCERT XI; Page No.72; Sub-topic 5.5]
110. (2) [NCERT XI; Page No.68; Sub-topic 5.2]
111. (4) [NCERT XI; Page No. 79; Sub-topic 5.9.1]
112. (3) (NCERT XII, Concept-Cytoplasmic inheritance)
113. (3) (NCERT XII, Pg 85, 5.4 POLYGENIC INHERITANCE)
114. (3) (NCERT XII, Pg 116, Para 1, Based on Last sentence)
115. (3) (NCERT 11 ${ }^{\text {th }}$, Page no- 24, Paragraph2.3.3, Line no- 1-3)
116. (4) [NCERT class XI, Page no. 92 (Figure 6.7) 93 (Point 6.3.1)]
117. (1) [NCERT class XI, Page no. 91, Point 6.3.2]
118. (1) (NCERT XI page no. 217, point 2 - last two lines)
119. (3) (NCERT XI page no. 218, sub-topic 13.8, $4^{\text {th }}$ paragraph and table 13.1, page no. 221)
120. (4) ($12^{\text {Th }}$ NCERT Page no. 242 to 243 , concept.)
121. (1) (NCERT $11^{\text {th }}$, Page no- $8,3^{\text {rd }}$ paragraph, Line no- 8,9)
122. (4) (NCERT $11^{\text {th }}$, Page no- 27, Paragraph- 1, Line no- 6,7)
123. (1) (NCERT 12 ${ }^{\text {th }}$, Page no- 36, Paragraph2.4.3, Line no- 4,5)
124. (3) (NCERT 12 ${ }^{\text {th }}$, Page no-26, Last paragraph, Line no- 9,10)
125. (1) [NCERT class XI, Page 239, $1^{\text {st }}$ paragraph]
126. (4) [NCERT class XI, Page 249 and 250 , point 15.4.3.3]
127. (1) (NCERT XI Pg.232, fig. 14.3)
128. (4) (NCERT XI Pg.231, $3^{\text {rd }}$ Para, $1^{\text {st }}$ line)
129. (4) (11 th Para 8.5.3, 8.5.11, Page no.132, 133, 134,)
130. (2) (11th Para 8.5.2, Page no. 132)
131. (2) (11 th Para 8.5.3.2, Page no. 134)
132. (2) (11th Para 10.4.1, Page no.169)
133. (4) (NCERT 12 ${ }^{\text {th }}$, Page no- $35,2^{\text {nd }}$ paragraph, Line no- 14,15)
134. (4) (NCERT 11 ${ }^{\text {th }}$ PK. Conceptual, bryo to gymnosperm.)
135. (3) ($12^{\text {th }}$ NCERT Page no. 245 conceptual, 14.4)

SECTION - B (Attempt Any 10 Questions)

136. (2) [NCERT class XI, Page no. 86, Point no. 6.1.2.1 (First paragraph)]
137. (3) (NCERT XI Pg.234, fig. 14.5)
138. (1) (11th Para 8.5.6 based, Page no. 136)
139. (2) (11th Para 10.4, Page no. 167)
140. (2) (NCERT 11 ${ }^{\text {th }}$, Page no- 24, Paragraph2.3.3, Line no-5-10)
141. (3) (NCERT 11 ${ }^{\text {th }}$, Page no- 11, Table-1.1)
142. (2) (NCERT $11^{\text {th }}$, Page no- $26,2^{\text {nd }}$ paragraph, line no-7,8)
143. (3) [NCERT XI; Page No. 75; Sub-topic 5.5.1.3 \& 5.5.1.4]
144. (3) (NCERT XII, Based on Mutation)
145. (2) (NCERT XI page no. 216, $1^{\text {st }}$ paragraph and 13.7.1 $2^{\text {nd }}$ paragraph)
146. (3) (NCERT $12^{\text {th }}$, Page no- $28,1^{\text {st }}$ paragraph, Line no- 15-17)
147. (4) (NCERT P.K. Page no.39)
148. (2) (11^{Th} NCERT PK conceptual)
149. (3) (NCERT $11^{\text {th }} \mathrm{PK}$, page no. 34 to 39 , conceptual)
150. (1) (NCERT XII, Pg 91, Para 1, Line 4)

ZOOLOGY

Section - A (35 Questions)

151. (3) (NCERT XI Page no. 290; 2nd paragraph 4th line)
152. (3) (NCERT XIth Page No. 337, 6th line of 3rd paragraph)
153. (2) (NCERT XIPage No. 57, Class osteichthyes)
154. (2) [NCERT P.No.311, Pelvic Girdle NCERT applied]
155. (2) (NCERT Pg. No. 194 to 195)
156. (4) [NCERT P.No. 316 last Para and p317 First Para]
157. (4) (NCERT Page No. 201)
158. (3) (NCERT $11^{\text {th }}$, Page no- 151, Paragraph9.8, Line no-1-4)
159. (2) (NCERT 11 ${ }^{\text {th }}$, Page no- 152, Paragraph9.9, Line no- 26,27)
160. (3) (NCERT $12{ }^{\text {th }}$, Page no $135,1^{\text {st }}$ paragraph, Line no-1-5)
161. (3) (NCERT 12 ${ }^{\text {th }}$, Page no-134, Figure- 7.7)
162. (1) (NCERT 12 ${ }^{\text {th }}$, Page no- 140, Paragraph7.9, Line no- 7,8)
163. (4) [NCERT P.No.212, $2^{\text {nd }}$ para]
164. (3) [NCERT P.No. $3102^{\text {nd }}$ para $5^{\text {th }}$ Line]
165. (1) [NCERT P.No. 309 Para Below Diagram]
166. (4) [NCERT P.No. 321 Forebrain Para]
167. (3) (NCERT XI Page No. 335, first lines.)
168. (4) (NCERT XI Page No. 334 (pineal gland), 335 (Thymus), 336 (Adrenal)
169. (2) [NCERT P.No.213, Biological Products and Vaccin Safety]
170. (4) [NCERT P.No.213, Biological Products , Last 4 lines]
171. (3) (NCERT 12 ${ }^{\text {th }}$ page no.264)
172. (3) (NCERT page no 59, para3)
173. (2) (NCERT11 th page no 115, fig no.7.18-a)
174. (3) (NCERT12th page no 54, para3)
175. (3) (NCERT 12th page no 47, para 1)
176. (2) (NCERT11 th page no120, para 1, line2)
177. (3) ($12^{\text {th }}$ NCERT Page no. 233 to 238)
178. (4) (NCERT11th page no 104, 7.1.3 Muscle Tissue)
179. (3) (NCERT11 th page no 112, para1)
180. (2) (12th Para10.3, $10.4,10.5,10.6$ Page no.184,185,186)
181. (3) (12th Para10.3, 10.4 Page no.184,185)
182. (3) (NCERT Pg. No. 150 to 151)
183. (1) (NCERT Pg. No. 160)
184. (3) (NCERT Pg. No. 147)
185. (2) (NCERT Based applied-cardiac cycle)

SECTION - B (Attempt Any 10 Questions)

186. (4) (12 ${ }^{\text {th }}$ NCERT Page no.233, 13.2.4(i))
187. (3) ($12^{\text {th }}$ NCERT Page no. 267 last para)
188. (1) (NCERT12th page no.65, para3, line5)
189. (3) (NCERT12th page no 58, first line)
190. (2) [NCERT P.No.311, Fig.20.9]
191. (4) [NCERT Applied]
192. (1) [NCERT P.No. 321 Forbrain Para, $17^{\text {th }} \&$ $18^{\text {th }}$ line $]$
193. (3) (NCERT XI Page No. 54; Phylum echinodermata)
194. (1) (NCERT XI Page No. 290; 12th line of 2nd paragraph)
195. (1) (12th Para10.2.3 , 10.4 Page no. 183)
196. (3) (NCERT $11^{\text {th }}$, Page no-144, $3{ }^{\text {rd }}$ paragraph, Line no- 16,17)
197. (3) (NCERT $12^{\text {th }}$, Page no- 130, Figure 7.2

NCERT $12^{\text {th }}$, Page no- 141 , last paragraph, concept based)
198. (3) (NCERT Pg. No. 186-187)
199. (4) (NCERT Pg. No. 153)
200. (2) (NCERT Page No. 186-187)

