

# **NEET- 2024**



## ANSWER KEY & SOLUTION KEY FINAL ROUND - 06 (PCB) Dt.12.04.2024

#### **PHYSICS**

#### **SECTION - A (35 Questions)**

- (3) The change in length corresponds to longitudinal strain and change in shape corresponds to shearing strain.
- 02. **(2)**
- 03. (3) According to parallel axes theorem,

$$I = I_{CG} + Md^2 = \frac{Ml^2}{12} + Md^2$$

$$=300 \left[ \frac{100^2}{12} + 20^2 \right] = 3.7 \times 10^5 \text{ gm-cm}^2$$

(4) According to Newton's law of cooling,

$$\frac{dQ}{dt} \propto \Delta\theta$$

But 
$$\frac{dQ}{dt} \propto (\Delta \theta)^n$$
 (given)

$$\therefore$$
  $n=1$ 

**(4)** Here,  $P_1 = 4$ atm,  $T_1 = 27$ °C = 300 K,  $V_1 = 1500$ m<sup>3</sup>,  $P_2 = 2$  atm,  $T_2 = -3$ °C = 270 K,  $V_2 = ?$ 

$$P_2 = 2$$
 atm,  $T_2 = -3$ °C = 270 K,  $V_2 = ?$ 

As 
$$\frac{P_1V_1}{T_1} = \frac{P_2V_2}{T_2}$$

$$\therefore V_2 = \frac{P_1 V_1 T_2}{T_1 P_2} = \frac{4 \times 1500 \times 270}{300 \times 2} = 2700 m^3$$

06.

B.E. = 
$$0.042 \times 931 = 39.1 \text{ MeV}$$

Number of nucleon in  ${}_{3}^{7}Li$  is 7.

$$\therefore \frac{B.E.}{nucleon} = \frac{39.1}{7} = 5.6 MeV.$$

07. (4) As  $\sigma_1 = \sigma_2$ 

$$\therefore \frac{Q_1}{4\pi r_1^2} = \frac{Q_2}{4\pi r_2^2} \text{ or } \frac{Q_1}{4\pi \epsilon_0 r_1^2} = \frac{Q_2}{4\pi \epsilon_0 r_2^2}$$

$$E_1 = E_2 \text{ or } E_1/E_2 = 1 \Longrightarrow E_1 : E_2 = 1 : 1$$

(3) Loudness of sound is given by 08.

 $dB = 10 \log \frac{I}{I_0}$  I is intensity of sound I<sub>0</sub> is reference intensity of sound

$$\therefore 120=10\log\left(\frac{I}{I_0}\right)$$

$$\Rightarrow I = 1W / m^2$$

Also 
$$I = \frac{P}{4\pi r^2} = \frac{2}{4\pi r^2}$$

$$\therefore r = \sqrt{\frac{2}{4\pi}} = \sqrt{\frac{1}{2\pi}}m = 0.399m = 40 \text{ cm}$$

- 09. **(2)** As  $\beta = \frac{\lambda D}{d}$  :  $\beta = \frac{1}{d}$ . Curve (2) is correct.
- (3) The net flux linked with closed surfaces  $S_1$ ,  $S_2$ ,  $S_3 & S_4$  are

For surfaces 
$$S_1, \phi_1 = \frac{1}{\varepsilon_0} (2q)$$

For surface 
$$S_2$$
,  $\phi_2 = \frac{1}{\varepsilon_0}(q+q+q-q) = \frac{1}{\varepsilon_0}2q$ 

For surface 
$$S_3, \phi_3 = \frac{1}{\varepsilon_0}(q+q) = \frac{1}{\varepsilon_0}(2q)$$

For surface 
$$S_4$$
,  $\phi_4 = \frac{1}{\varepsilon_0} (8q - 2q - 4q) = \frac{1}{\varepsilon_0} (2q)$ 

Hence,  $\phi_1 = \phi_2 = \phi_3 = \phi_4$  i.e. net electric flux is same for all surfaces.

Keep in mind, the electric field due to a charge outside (S<sub>3</sub> and S<sub>4</sub>), the Gaussian surface contributes zero net flux through the surface, because as many lines due to that charge enter the surface as leave it.

11. **(2)** 
$$\frac{I_g}{I_s} = \frac{s}{R_s}$$

$$R_g = \frac{50 - 20}{20} \times 30\Omega \implies \frac{3}{2} \times 30\Omega = 45\Omega$$

12. (2) Put v = 0,



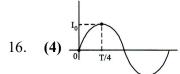
$$0 = 12x - \frac{3}{4}x^2 \Rightarrow x = 16m$$

(1) In the following figure, magnetic fields at O due to section 1, 2, 3 and 4 are considered as B<sub>1</sub>, B<sub>2</sub> and B<sub>3</sub> and B<sub>4</sub>, respectively.

$$\mathbf{B}_1 = \mathbf{B}_3 = \mathbf{0}$$

$$B_2 = \frac{\mu_0}{4\pi} \cdot \frac{\pi i}{R_1} \otimes$$

$$B_{2} = \frac{1}{4\pi} \cdot \frac{1}{R_{1}} \otimes \frac{1}{R_{2}} \otimes \frac{1}{R_{1}} \otimes \frac{1}{R_{2}} \otimes \frac{1}{R_{1}} \otimes \frac{1}{R_{1}} \otimes \frac{1}{R_{2}} \otimes \frac{1}{R_{2}} \otimes \frac{1}{R_{1}} \otimes \frac{1}{R_{2}} \otimes \frac{1}{R_{2}} \otimes \frac{1}{R_{1}} \otimes \frac{1}{R_{2}} \otimes \frac{1}{R_{1}} \otimes \frac{1}{R_{2}} \otimes \frac{1}{R_{2}} \otimes \frac{1}{R_{2}} \otimes \frac{1}{R_{1}} \otimes \frac{1}{R_{1}} \otimes \frac{1}{R_{2}} \otimes \frac{1}{R_{1}} \otimes \frac{1}{R_{1$$


$$As |B_{2}| > |B_{4}|$$

So 
$$B_{net} = B_2 - B_4 \Rightarrow B_{net} = \frac{\mu_0 i}{4} \left( \frac{1}{R_1} - \frac{1}{R_2} \right) \otimes$$

- (1) Here,  $M = 0.4 \text{ JT}^{-1}$ ; B = 0.16 TFor stable equilibrium, the potential energy (U) of bar magnet in the magnetic field is  $U = -MB = -0.4 \times 0.16 = -0.064 J$
- 15. (4) Magnetic potential energy,  $U = 25 \text{ mJ} = 25 \times 10^{-3} \text{ J}$ Inductance, L = ?

From 
$$U = \frac{1}{2}LI^2$$

$$L = \frac{2U}{I^2} = \frac{2 \times 25 \times 10^{-3}}{(60 \times 10^{-3})^2} = \frac{500}{36} = 13.89H.$$



We have  $\omega = 120\pi$ 

and, 
$$T = \frac{2\pi}{\omega} = \frac{2\pi}{120\pi} = \frac{1}{60}$$

So, req. time = 
$$\frac{T}{4} = \frac{1}{240}$$
s

17. **(3)** 
$$X = \frac{2k^3l^2}{m\sqrt{n}}$$

The percentage error in X is given by

$$\frac{\Delta X}{X} \times 100 = \left(3\frac{\Delta k}{k} + 2\frac{\Delta l}{l} + \frac{\Delta m}{m} + \frac{1}{2}\frac{\Delta n}{n}\right) \times 100$$

$$= 3 \times 1\% + 2 \times 2\% + 3\% + \frac{1}{2} \times 4\%$$

$$=3\% + 4\% + 3\% + 2\% = 12\%$$

Thus, the value of X is uncertain by 12%

18. **(2)** 
$$B_0 = \frac{E_0}{c}$$

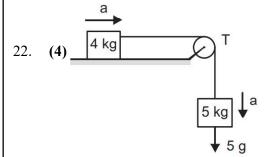
E and B are in same phase.

$$\hat{E} \times \hat{B} = \hat{k} \Rightarrow \hat{i} \times \hat{B} = \hat{k} \Rightarrow \hat{B} = \hat{j}$$

19. (4) 
$$\frac{v}{m} = \frac{0}{0} + \frac{v_1}{0}$$

By the momentum conservation

$$m\mathbf{v} = \frac{3m}{4}\mathbf{v}_1 \Rightarrow \mathbf{v}_1 = \frac{4\mathbf{v}}{3}.$$

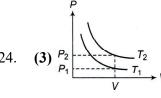

20. **(1)** Momentum, 
$$p = mv = \frac{\frac{1}{2}mv \times v}{\frac{1}{2} \times v} = \frac{2KE}{v}$$

If KE as well as speed are doubled, momentum p remains unchanged.

$$\therefore \quad \lambda = \frac{h}{p}.$$

Hence, de Broglie wavelength will remain unchanged.

21. **(4)** 
$$E = E_4 - E_3 = -\frac{13.6}{4^2} - \left(-\frac{13.6}{3^2}\right)$$
  
=  $-0.85 + 1.51 = 0.66$  eV.




$$a = \frac{\text{Net driving force}}{\text{Total mass in motion}} = \frac{5g}{5+4} = \frac{5g}{9}$$

23. (1) It is a system of two springs in parallel. The restoring force on the body is due to springs and not due to gravity pull.

> Therefore, slope is irrelevant. Here the effective spring constant = k + k = 2k;

Thus time period,  $T = 2\pi \sqrt{M/2k}$ .



$$n = \frac{P_2 V}{R T_2} = \frac{P_1 V}{R T_1}$$

$$\frac{P_2}{T_2} = \frac{P_1}{T_1}$$



Since  $P_2 > P_1$ , hence,  $T_2 > T_1$ 

- 25. (1) Red light and blue light have different wavelength and different frequency.
- 26. **(3)** Electron and proton have same amount of charge so they have same coulomb force. They have different acceleration because they have different masses.
- 27. **(2)**

28. **(2)** 
$$dq = \int_{2}^{3} (3t^2 + 4t^3) dt = (t^3 + t^4)_{2}^{3}$$
  
27 + 81 - 24 = 84

- 29. **(3**)
- 30. **(2)** We know that,  $v_e = \sqrt{2gR}$

$$\therefore \frac{(v_e)_{P_1}}{(v_e)_{P_2}} = \frac{\sqrt{2g_1R_1}}{\sqrt{2g_2R_2}} = \sqrt{\frac{g_1}{g_2}} \cdot \sqrt{\frac{R_1}{R_2}} = \sqrt{kr}.$$

31. **(3)** Since, Kiran's initial and final positions coincides.

Thus, his displacement,

$$\Delta x = x_{final} - x_{initial} = 0$$

However, corresponding path length

$$240 + 240 = 480 \text{ m}$$

Thus, the magnitude of the displacement for the given course of motion is zero but the corresponding path length is 480 m.

So, all statements are correct.

- 32. (4)
- 33. (1) When a person walks on the road, he exerts a force on floor. According to Newton's third law of motion, a reaction force exerts on the person which is being provided by the frictional force.

Thus, the frictional force helps a person to walk on a rough surface.

Thus, the statement given in option (1) is incorrect, rest are correct.

- 34. **(3)**
- **35. (2)**

#### **SECTION - B (Attempt Any 10 Questions)**

- 36. (1) SI unit of magnetic flux, induced emf coefficient of self-inductance and magnetic energy are respectively the weber, volt, henry and joule. Choice (1) is correct.
- **37. (2)**
- 38. **(4)** Resolve the 90 N, 80 N and 70 N forces into x and y components. The line of action of 90 N, 50 N, and x-components of the 80 N and 70 N forces pass through the pivot point A, therefore they cause on rotation.
  - :. The total torque about point A is

$$= (80 \sin 30^{\circ}) \left(\frac{L}{2}\right) - (60) \left(\frac{L}{2}\right) + (70 \cos 60^{\circ})(L)$$
$$= (80) \left(\frac{1}{2}\right) \left(\frac{3}{2}\right) - (60) \left(\frac{3}{2}\right) + (70) \left(\frac{1}{2}\right)(3) = 75 \,\text{N m.}$$

39. **(4)** When a charged particle is moving on a circular path in a magnetic field, the magnitude of velocity does not change but direction of velocity is changing every moment. Hence velocity is changing, so momentum  $(m\vec{v})$  is also changing.

40. **(3)** 
$$E = \frac{p^2}{2m} \Rightarrow \sqrt{E} \propto p$$

$$\Rightarrow \sqrt{E} \propto \frac{1}{(1/p)}$$

41. (3) f = -15 cm (as mirror is concave) m = -2 (-ve sign is due to virtual image)

$$m = \frac{\mathbf{v}}{u}$$

or 
$$-2 = \frac{\mathbf{v}}{u} \Rightarrow \mathbf{v} = -2u$$

Also, 
$$\frac{1}{f} = \frac{1}{v} + \frac{1}{u} = -\frac{1}{2u} + \frac{1}{u} = \frac{1}{2u}$$

$$u = \frac{f}{2} = \frac{-15}{2} = -7.5$$
cm.

42. (1) From the principle of dimensional homogeneity  $[\alpha t]$  = dimensionless

$$\therefore [\alpha] = \left\lceil \frac{1}{t} \right\rceil = [T^{-1}]$$

Similarly, 
$$[x] = \frac{[v_0]}{[\alpha]}$$

$$\therefore [v_0] = [x][\alpha] = [L][T^{-1}] = [LT^{-1}]$$

43. (1) Number significant figures 23.023 is 5.

And, that of is 1.

And, that of is 2.

44. **(2)** Gases have less viscosity.

Due to insoluble impurities like detergent surface tension decreases

45. **(1)** Here, h = 100 m,  $\Delta T = ?$ 

If *m* is mass of water, then energy converted into heat.

$$Q = mgh$$

If  $\Delta T$  is rise in temperature, then

$$Q = cm\Delta T = mgh$$

$$\Delta T = \frac{gh}{c} = \frac{10 \times 100}{4200} = 0.23$$
°C.

46. **(4)** Here, a = 14cm, y = 11 cm, V = 80 m/s, v = ?



$$V = \omega \sqrt{a^2 - y^2} = 2\pi v \sqrt{a^2 - y^2}$$

$$v = \frac{V}{2\pi \sqrt{a^2 - y^2}}$$

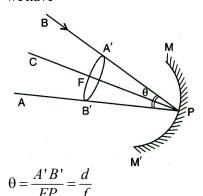
$$v = \frac{80}{2\pi \sqrt{14^2 - 11^2}} = \frac{40}{\pi \times 5\sqrt{3}} = \frac{8}{\pi \times \sqrt{3}} Hz.$$

- 47. **(4)** The electric field on one plate due to the charge on the other is  $E = \frac{Q}{2A\epsilon_0}$ 
  - $\therefore$  The force on one plate due to the charge on the other is

$$F = QE = Q\left(\frac{Q}{2A\varepsilon_0}\right) = \frac{Q^2}{2A\varepsilon_0}$$

48. **(3)** Impedance at resonant frequency is minimum in series LCR circuit.

So, 
$$Z = \sqrt{R^2 + \left(2\pi f L - \frac{1}{2\pi f C}\right)^2}$$


When frequency is increased or decreased, Z increases.

49. (1) Since, the sun is very distant, u is very large and so (1/u) is practically zero.

$$S_0, \frac{1}{v} + 0 = -\frac{1}{f}$$

i.e., the image of sun will be formed at the focus and will be real, inverted and diminished.

Now, as the rays from the sun subtend an angle  $\theta$  radians at the pole, hence, according to figure, we have



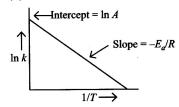
(where d = diameter of the image of the sun) i.e.,  $d = \theta f$ .

50. **(1)**  $y = 7\sin(7\pi t - 0.04x + \pi/3)$ 

Compare it with the standard equation of wave motion

$$y = r \sin\left(\frac{2\pi}{T}t - \frac{2\pi}{\lambda}x + \phi\right)$$

$$\frac{2\pi}{t} = 7\pi, T = \frac{2}{7}s$$
, and  
 $\frac{2\pi}{\lambda} = 0.04, \lambda = \frac{2\pi}{0.04} = 50\pi m$   
 $v = \frac{\lambda}{T} = \frac{50\pi}{2/7} = 175\pi \text{ m/s}$ 


### **CHEMISTRY**

#### **SECTION - A (35 Questions)**

51. **(3)** 

The oxidation state of oxygen in  $H_2O_2$  is -1 which is a intermediate oxidation state value for oxygen hence  $H_2O_2$  can act both as reducing as well as oxidising agent.

52. **(2)** 



$$-\frac{E_a}{R} = -5 \times 10^3 = -5000$$

$$\Rightarrow E_a = 5000 \times 8.314 = 41570 \text{ J mol}^{-1}$$
= 41.57 k J mol}

53. **(2)** 

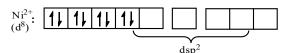
$$CH_3COOH \xrightarrow{NH_3} CH_3CONH_2$$

$$\xrightarrow{P_2O_5} CH_3C \equiv N \xrightarrow{C_2H_5OH} CH_3-CH_2-$$

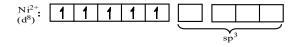
NH,

54. (1)

From Kjeldahl's method, Percentage of nitrogen


$$= \frac{1.4 \times N \times V}{W} = \frac{1.4 \times 0.1 \times 30}{5} = 0.84\%$$

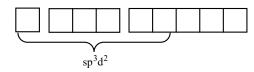
55. **(4**)


Majority of four co-ordinated complexes of nickel are square planar.

 $MnX_4^{2-}$  complex are tetrahedral.

F<sup>-</sup> is a weak field ligand. [FeF<sub>6</sub>]<sup>4-</sup> is thus a high spin complex with sp<sup>3</sup>d<sup>2</sup> hybridisation.




No unpaired electrons: diamagnetic





$$n = 5, N = \sqrt{n(n+2)} = 5.9 \text{ B.M.}$$

$$Fe^{2+}: 1 1 1 1 1$$



$$n = 4, N = \sqrt{n(n+2)} = 4.9 \text{ B.M.}$$

56 (3)



3-Ethyl-1, 1-dimethyl cyclo hexane

57. (4)

For a first order reaction half-life period is constant i.e. it is independent of initial concentration of the reacting species. It is related to rate constant as

$$\mathbf{t}_{1/2} = \frac{0.693}{k} \,.$$

58. (4

We know that

$$\Delta H = \Delta E + P\Delta V$$

In the reactions,  $H_2 + Br_2 \rightarrow 2HBr$  there is no change in volume or  $\Delta V = 0$ .

So,  $\Delta H = \Delta E$  for this reaction.

59. (1)

$$(i)$$
- $(b)$ ,  $(ii)$ - $(a)$ ,  $(iii)$ - $(d)$ ,  $(iv)$ - $(e)$ ,  $(v)$ - $(c)$ 

60. (2)

 $KMnO_4$  is purple in colour due to (ligand  $\rightarrow$  metal) charge transfer phenomenon.

There is no electron present in d-orbitals of manganese in  $MnO_{-4}^{-}$  (O.S. of Mn is +7).

61. **(1**)

Both A and R are true but R is not the correct explanation of A.

KCl, NaCl and NH<sub>4</sub>Cl cannot be used as a salt-bridge in a cell containing silver or silver ion because they react with it to form a ppt. of AgCl.

62. **(2)** 

Zn<sup>2+</sup> (aq) + 2e<sup>-</sup> 
$$\rightarrow$$
 Zn(s); E° = -0.76 V  
Ag<sub>2</sub>O(s) + H<sub>2</sub>O(l) + 2e-  $\rightarrow$  2Ag(s) + 2OH<sup>-</sup> (aq); E° = 0.34 V

$$Zn(s) + Ag_2O(s) + H_2O(l) \rightleftharpoons$$
  
 $2Ag(s) + Zn^{2+}(aq) + 2OH^-(aq),$   
 $\vdots E_{-n} = ?$ 

$$\begin{split} E_{cell}^{\circ} &= (E_{R.P.}^{\circ})_{cathode} - (E_{R.P.}^{\circ})_{anode} \\ E_{cell}^{\circ} &= 0.34 - (-0.76) = 1.10 \text{ V} \\ E_{cell}^{\circ} &= E_{cell}^{\circ} = 1.10 \text{ V} \end{split}$$

- 63. **(3)** (i)-(b), (ii)-(d), (iii)-(e), (iv)-(a), (v)-(c)
- 64. **(3)** I, II and IV only
- 65. (3)
  Melting point of Fe is more than of Mn  $_{25}$  Mn  $\longrightarrow$  [Ar]<sup>18</sup> 3d<sup>5</sup> 4s<sup>2</sup>  $\rightarrow$  5 unpaired electrons.

 $_{26}$ Fe  $\longrightarrow$  [Ar]<sup>18</sup>3d<sup>6</sup>4s<sup>2</sup>  $\rightarrow$ 4 unpaired electrons

66. **(4)** H<sub>2</sub>O is angular and BeF<sub>2</sub> is linear

 $H_2O$  is angular and Ber 67. (3)

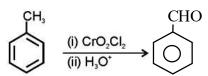
$$N = \frac{(10 \times 0.05) + (12 \times 0.025) + (5 \times 0.04)}{1} = 1$$

68. **(2)** 

Among the given statements, (B) and (D) are incorrect whereas A, C and E are correct. The correct form of (B) and (D) are:

At equilibrium constant for the reverse reaction is equal to the inverse of the equilibrium constant for the forward reaction.

Equilibrium constant reflects the change in stoichiometric coefficients.


**69. (2)** 

Acetonoxime

70. **(3)** 

Statement-1 is false, Statement-2 is true

71. (2)



72. **(2)** 

Methoxypropane and ethoxyethane are metamers to each other.

73. (1)

$$(\pi^* 2p_y)^1$$
 and  $(\pi^* 2p_y)^1$ 

74. **(2** 

$$\lambda = \frac{c}{v} = \frac{3 \times 10^{17}}{6 \times 10^{15}} = 50 \text{ nm}$$

75. **(3** 

For example for n = 3

 $\ell = 0, 1, 2 \text{ (total 3 values)}$ 

76. **(2** 

Greater the stability lesser will be heat of hydrogenation.

Trans–2–butene more stable, less heat of hydrogenation.

77. **(3)** 



Electrophilic addition reaction involves rearrangement of carbocation.

- 78. **(3)** Conceptual fact.
- 79. **(2)**The second ionisation potential of Mg is greater than the second ionisation potential of Na.
- 80. **(4)**Multiple proportions
- 81. **(2)**  $Na_{2}SO_{4} . 10H_{2}O = 2 \times 23 + 32 + 4 \times 16 + 10 \times 18$  = 46 + 32 + 64 + 180 = 322gm  $322gm Na_{2}SO_{4} . 10H_{2}O contains = 224 gm oxygen$   $32.2gm Na_{2}SO_{4} . 10H_{2}O contains$   $= \frac{32.2 \times 224}{322} = 22.4 gm$
- **82. (4)** t-alkyl halide undergoes elimination.
- 83. (3)OR is ring activating group and ortho para directing group.
- 84. **(1)** White phosphorus is soluble in CS<sub>2</sub> whereas red phosphorus is insoluble in it.
- 85. **(4)**Small hydrogen atoms can easily fit in between boron atoms but large chlorine atoms do not

#### SECTION - B (Attempt Any 10 Questions)

- 86. **(2)** 
  - A-II, B-III, C-IV, D-I
- 87. **(1)**  $\pi_1 = \pi_2$   $C_1 = C_2$   $\frac{5.12}{342} = \frac{0.9}{M}$  M = 60
- 88. **(4)**Due to resonance, C<sub>2</sub> C<sub>3</sub> bond is little shorter than C C single bond length of 1.54 Å in ethane. So the most appropriate value is 1.46 Å.
- 89. (2) Let P is initial pressure of  $NO_2$   $2NO_2(g) \rightleftharpoons 2NO(g) + O_2(g)$ At eqm P - 2x 2x xas per given x = 0.25

$$K_p = \frac{(2x)^2 (x)}{(P-2x)^2}$$

$$\Rightarrow 156.25 = \frac{(0.5)^2 (0.25)}{P_{NO_2}^2}$$

$$\Rightarrow$$
  $P_{NO_2} = 0.02$ 

- 90. **(3)** (P)-(2); (Q)-(1); (R)-(4); (S)-(3)
- 91. (2)

$$\begin{array}{ccc}
O & & \\
O & P - O \\
O & & \\
O & & \\
\end{array}$$

$$\begin{array}{ccc}
B.O. = \frac{5}{4} = 1.25
\end{array}$$

Due to resonance –3 charge is distributed in all the four oxygen atoms hence each oxygen has

$$\frac{-3}{4} = -0.75$$
 charge.

92. **(3)**If (A) is right but (R) is wrong.

In allenes terminal double bonded carbons must be connected to two different groups.

- 93. **(2)** A–(t), B–(p), C–(s), D–(q), E–(r)
- 94. (1) Due to electronegativity difference, the stability of interhalogen compounds follows following order:  $IF_3 > BrF_3 > ClF_3$
- 95. (2) Moles of CoCl<sub>3</sub>.6NH<sub>3</sub>

$$=\frac{2.675}{267.5} = \frac{1}{100} = 0.01$$
 mole

Moles of AgCl =  $\frac{4.78}{143.5} = \frac{3}{100}$  mole = 0.03 mole

0.01 mole of compound gives moles of AgCl=0.03 mole So, 1 mole of compound gives

moles of AgCl =  $\frac{0.03}{0.01}$  = 3 mole. So structural

formula of compound having 3Cl<sup>-</sup>ions out side of coordination sphere, so formula is [Co(NH<sub>3</sub>)<sub>6</sub>]Cl<sub>3</sub>

- 96. (3)  $2BrO_3^- + 12H^+ + 10Br^- \rightarrow 6Br_2 + 6H_2O$ 10 mole e<sup>-</sup> required for formation of 6 moles of
  - $\therefore \text{ n-factor of } Br_2 = \frac{10}{6} = \frac{5}{3}$
  - eq.wt. =  $\frac{\text{mol.wt.}}{\text{n}} = \frac{\text{m}}{5/3} = \frac{3\text{M}}{5}$
- 97. **(2)**   $2H^{+}(aq.) + 2OH^{-}(aq.) \rightarrow 2H_{2}O(l);$  $\Delta H_{1} = -55.84 \times 2 = -111.68 \text{ kJ/mol}$



$$H_3PO_3 + 2NaOH \rightarrow Na_2HPO_3(aq) + 2H_2O(l);$$

$$\Delta H_2 = -106.68 \text{ kJ/mol}$$

$$\Delta H_{\rm ionisation} = 111.68 - 106.68 = 5 \, kJ \, / \, mol$$

- 98. **(4)**Cannizzaro's reaction
- 99. (1)

100. **(4)** 2 and 4

#### **BOTANY**

#### Section - A (35 Questions)

- 101. (1) (NCERT XII, Pg 89, Mendelian disorder)
- 102. **(3)** (NCERT XII, Pg 92, Down's Syndrome-3<sup>rd</sup> line)
- 103. **(3)** (11<sup>th</sup> NCERT PK, page no.28, fig.3.2(d))
- 104. **(2)** (11<sup>th</sup> NCERT PK, 1MMC=4spores means 10MMC×4=40 Spores,1spore=1Protonema =10 leafy stage.)
- 105. (3) (12<sup>TH</sup> NCERT page no.248 Fig.14.4(a),14.4(c))
- 106. **(3)** (11th Para 8.5.10, Figure 8.13, Page no.139)
- 107. (4) [NCERT XI, New added family]
- 108. (2) (NCERT XI Pg.227, 2<sup>nd</sup> Para)
- 109. (3) (NCERT XI Pg.235, 14.4, 2<sup>hd</sup> Para, 2<sup>nd</sup> line)
- 110. **(4)** (NCERT XII, Pg 80, based on Law of Independent Assortment)
- 111. **(2)** (NCERT 12<sup>th</sup>, Page no- 31, 2<sup>nd</sup> paragraph, Line no- 15-17)
- 112. **(2)** (NCERT 12<sup>th</sup>, Page no- 36, Paragraph- 2.4.3, Line no- 12,13)
- 113. **(1)** (NCERT 11<sup>th</sup>, Page no- 26, 2<sup>nd</sup> paragraph, Line no- 21, 22)
- 114. **(4)** (NCERT 11<sup>th</sup>, Page no- 7, 1<sup>st</sup> paragraph, Line no- 1-4)
- 115. **(4)** (NCERT XI page no. 214, fig. 13.7)
- 116. **(2)** (NCERT XI page no. 215, sub-topic 13.7, 3<sup>rd</sup> paragraph, last 2 lines)
- 117. **(4)** (NCERT XII, Pg 117, Fig- 5.14)
- 118. (2) (NCERT XII, Pg 115, Para 3, Line 5)
- 119. **(1)** (NCERT XII, Pg 97, Based on Chargaff's rule)

- 120. **(3)** (11th Para 8.5.10, Page no.139)
- 121. **(3)** (11th Para 8.4.2, Page no.129)
- 122. **(1)** (11th Para 10.2, Page no.164,165,166)
- 123. (1) [NCERT class XI, Page no. 249 (First paragraph) and 250 (Point 15.4.3.4 (Third paragraph)]
- 124. **(1)** [NCERT XI, Page No.75; Sub-topic 5.5.1.3 & 5.5.1.4]
- 125. (3) [NCERT XI, Page No. 80; Sub-topic 5.9.2]
- 126. **(4)** [NCERT class XI, Page no. 87, Point 6.1.2.2 (Last line), 88 (Line no. 01)
- 127. (3) (NCERT Page no- 23, 2<sup>nd</sup> Paragraph, Concept based)
- 128. **(4)** (NCERT 11<sup>th</sup>, Page no- 22, Paragraph- 2.3, Line no- 18- 22)
- 129. (4) [NCERT class XI, Page no. 91, First paragraph-Last line]
- 130. **(2)** (11<sup>th</sup> NCERT Page no.32, Concept)
- 131. **(2)** (NCERT XII, Pg 91, Fig 5.15)
- 132. **(2)** ( NCERT XII, Pg 111, Para 1, Line 2)
- 133. **(4)** (NCERT XII, Pg 109, Based on Transcription process)
- 134. **(3)** (NCERT XII, Pg 129, Para 1, Line 2)
- 135. (2) (11th Para 10.4.1, Page no.168)

#### SECTION - B (Attempt Any 10 Questions)

- 136. **(3)** (12<sup>Th</sup> NCERT Page no.244,14.3,3<sup>rd</sup> para)
- 137. (3) (NCERT XII, Pg 91, Phenylketonuria)
- 138. (1) (11th Para 8.4.1, Page no.129)
- 139. **(3)** (NCERT XII, Pg 112, Para 1, Line 4)
- 140. (3) (11th Para 10.4, concept based- Page no.167)
- 141. **(1)** [NCERT class XI, Page no. 94, Line number- 06-09]
- 142. **(1)** [NCERT class XI,, Page 250, Point 15.4.3.4 (First paragraph)]
- 143. (1) (NCERT XI Pg.229, Last Para, 1st line)
- 144. (3) (11th NCERT Conceptual)
- 145. **(4)** (NCERT Page no 20, Paragraph- 2.2, line no- 19,20)
- 146. **(3)** (NCERT Page no- 27, 1<sup>st</sup> Paragraph, Line no- 20,21)
- 147. **(3)** (NCERT XI page no. 213, fig. 13.6 and 2<sup>nd</sup> paragraph)



- 148. **(3)** [NCERT XI, Page No. 67, 71 & 77; Subtopic 5.1.1; 5.3.3; 5.4; 5.7.2]
- 149. **(4)** (NCERT 11<sup>th</sup>, Page no- 7, Last paragraph, Line no- 33-37)
- 150. **(2)** (NCERT 11<sup>th</sup>, Page no- 23, Paragraph- 2.3.1, Line no- 3,4)

#### **ZOOLOGY**

#### Section - A (35 Questions)

- 151. (3) (NCERT XI NCERT conceptual)
- 152. **(3)** ( 12<sup>th</sup> NCERT page no.219,13.1.2 (i), 225 2<sup>nd</sup> paras)
- 153. **(3)** (NCERT11th, page no 102, para 3)
- 154. **(3)** (NCERT11th, page no 116, para 2, line 6)
- 155. **(1)** (NCERT 12<sup>th</sup> page no 52,53)
- 156. **(4)** (NCERT Pg. 269)
- 157. **(3)** (NCERT Pg. No. 286)
- 158. **(4)** (12<sup>Th</sup> NCERT Page no.231, conceptual)
- 159. **(2)** (NCERT 12<sup>th</sup>, page no 44, last para)
- 160. **(3)** (NCERT 12<sup>th</sup>, page no 46, para 2)
- 161. **(1)** (NCERT12th page no 46, para 2)
- 162. **(3)** (NCERT 12<sup>th</sup> page no 64, para 3)
- 163. **(4)** (NCERT Pg. No. 157)
- 164. **(4)** (NCERT Pg. No.157)
- 165. **(3)** [NCERT P.No.308 Last Para, 304 Last Para, P.No. 305 10<sup>th</sup> Line]
- 166. (1) [NCERT P.No.310 2<sup>nd</sup> para, 15<sup>th</sup> line]
- 167. **(4)** [NCERT P. No.321 1<sup>st</sup> Line]
- 168. **(3)** (NCERT XIth Page No. 270)
- 169. **(4)** (NCERT Pg. No. 149, 150)
- 170. **(2)** (NCERT Pg. No. 283)
- 171. (3) (NCERT 11<sup>th</sup>, Page no- 146, Paragraph- 9.3, Concept based)
- 172. **(3)** [NCERT P.No.210,12.2 1<sup>st</sup> para]
- 173. (3) [NCERT P.No.317, Generation and conduction of Nerve Impulse]
- 174. **(2)** (NCERT 12<sup>th</sup>, Page no- 142, Summary)
- 175. **(3)** (NCERT 12<sup>th</sup>, Page no- 134, Figure- 7.7 concept based)

- 176. **(2)** (NCERT Page no- 137, Paragraph-3, First 2 lines)
- 177. **(1)** [NCERT P.No.199 Fig 11.4,]
- 178. (1) [NCERT P.No.208 GMO Points Applied,]
- 179. **(3)** (NCERT 11<sup>th</sup>, Page no- 144, 2<sup>nd</sup> paragraph, ,Line no- 9, 10)
- 180. (1) (NCERT XI Page No. 293; 4th line of 5th paragraph.)
- 181. (1) (NCERT XI Page No. 52; phylum annelida)
- 182. (1) (NCERT XI Page No. 49, Phylum-porifera)
- 183. **(3)** (12<sup>th</sup> NCERT Page no.263 1<sup>st</sup> para)
- 184. **(4)** (12th Para 10.1, Page no.181)
- 185. **(4)** (12th Para 10.1, Page no.181)

#### SECTION - B (Attempt Any 10 Questions)

- 186. (1) [NCERT P.No.312, Synovial Joints 4<sup>th</sup> Line]
- 187. **(3)** (12<sup>th</sup> NCERT Page no.233, (i), concept)
- 188. **(3)** (NCERT 12<sup>th</sup> page no 59, para 2)
- 189. (1) (NCERT XI Page No. 333, 6th line of 2nd paragraph)
- 190. **(4)** (NCERT 11<sup>th</sup> page no 114, para 3)
- 191. **(3)** (NCERT 12<sup>th</sup>, Page no- 135, 3<sup>rd</sup> paragraph, Line no- 1-10)
- 192. **(2)** (NCERT 11<sup>th</sup>, Page no-147, Table-9.4)
- 193. **(3)** [NCERT P.No.319, First Para ]
- 194. **(4)** [NCERT P.No.310 12<sup>th</sup> Line]
- 195. **(3)** (12th Para 10.3 based / Page no. 184)
- 196. (4) [NCERT P.No.208, GMO Points Applied]
- 197. **(4)** (NCERT Pg. No. 148)
- 198. (2) (NCERT Pg. No. 157)
- 199. **(2)** (NCERT XI Page No. 333, Last 2 lines of 1st paragraph)
- 200. (1) (NCERT XI Page No. 48, 4.1.6)