PHYSICS

SECTION - A (35 Questions)

1. (3) Density of mixture

$$
=\frac{\text { mass of mixture }}{\text { volume of mixture }}=\frac{m_{1}+m_{2}+\ldots+m_{n}}{\frac{m_{1}}{\rho_{1}}+\frac{m_{2}}{\rho_{2}}+\ldots+\frac{m_{n}}{\rho_{n}}}
$$

$$
\frac{\sum_{i=1}^{n} m_{i}}{\sum_{i=1}^{n} \frac{m_{i}}{\rho_{i}}}
$$

Hence, the correct answer is option (3)
02. (1) If M is mass of rod of length L, its moment of inertia about an axis passing through its centre and perpendicular to length of the rod is
$I=\frac{M L^{2}}{12}$
$\Delta I=\frac{1}{12} M(2 L \Delta L)$
$\frac{\Delta I}{I}=\frac{2 \Delta L}{L}$
As $\Delta L=L \alpha \Delta t \quad \therefore \frac{\Delta I}{I}=\frac{2 L \alpha \Delta t}{L}=2 \alpha \Delta t$.
03. (1)
04. (1) $\Delta\left(W_{\text {cycle }}\right)=(2 P-P)(3 V-V)=2 P V$

Cycle is anticlockwise on $P-V$ diagram. Hence, work done is - ve. \Rightarrow heat rejected.
$\Delta Q_{\text {cycle }}=\Delta W_{\text {cycle }}=2 P V$
Heat rejected in cycle $\mathrm{ABCD}=2 P V$.
05. (3) The field due to infinite linear charge distribution
$\Rightarrow E \propto \frac{1}{r}$ So hyperbola .
06. (3) From energy conservation, $m g h \geq \frac{1}{2} m v^{2}$
at lowest point ($v_{\min }=\sqrt{5 g r}$ to complete vertical circular motion)
$h \geq \frac{(\sqrt{5 g r})^{2}}{2 g} \Rightarrow h \geq \frac{5 r}{2}$
07.
(4) $\mathrm{F}_{\text {avg }}=\frac{\Delta p}{\Delta t}=\frac{0.12 \times 25}{0.1}=30$
08. (4) Relative velocity of the scooter with respect to the bus $\left(v_{\mathrm{s}}-10\right)$
$\therefore \frac{1000}{\left(v_{s}-10\right)}=100 s \Rightarrow v_{s}=20 \mathrm{~ms}^{-1}$
09. (1) Magnetic field inside the conductor, $B_{i n} \propto r$ and magnetic field outside the conductor, $B_{\text {out }} \propto \frac{1}{r}$ (where r is the distance of observation point from axis)
Aliter: The magnetic field at a point outside the straight conductor is given by $\mathrm{B}=\frac{\mu_{0} i}{2 \pi r}$
The magnetic field at a point inside the conductor is
$B=\frac{\mu_{0} i \times r}{2 \pi a^{2}}$
Magnetic field inside the conductor $\mathrm{B}_{\text {in }} \propto r$ and magnetic field outside the conductor $B_{\text {out }} \propto \frac{1}{r}$
(where r is the distance of observation point from axis)
10. (4) If the origin of the coordinate system is at the centre of mass then $\vec{R}_{C M}=0$, which in turn implies that
$\sum_{i} m_{i} \vec{r}_{i}=0$ as $R_{C M}=\frac{\sum_{i} m_{i} \vec{r}_{i}}{\sum_{i} m_{i}}$,
($m_{i} \vec{r}_{i}=0$ represents the moment of a mass about the origin or the centre of mass.)
11. (3) Here, $e=-8 V, \frac{d I}{d t}=\frac{4-2}{0.05}=40 \mathrm{~A} / \mathrm{s}, L=$?

As $-e=L \frac{d I}{d t}, L=\frac{-e}{d I / d t}=\frac{8}{40}=0.2 H$.
12. (3) $[\mathrm{X}]=[$ Force $]-[$ Density $]=\left[\mathrm{MLT}^{-2}\right] \times\left[\mathrm{ML}^{-}\right.$ $\left.{ }^{3}\right]=\left[\mathrm{M}^{2} \mathrm{~L}^{-2} \mathrm{~T}^{-2}\right]$
13. (4) $I=\frac{V}{X_{C}}=230 \times 600 \times 100 \times 10^{-12}=13.8 \mu \mathrm{~A}$
14. (2) Since, de Broglie wavelength $\lambda=\frac{h}{m \mathrm{~V}}$ Velocity of electron in Bohr orbit is $\mathrm{v} \propto \frac{1}{n}$.
15. (4)
16. (1) Diode is in forward bias

$V_{A B}=\frac{5}{5+10} \times 30=10 \mathrm{~V}$
17. (3) $M=1+\frac{D}{f}$
$6=1+\frac{25}{f} \Rightarrow 5=\frac{25}{f} \Rightarrow f=5 \mathrm{~cm}$
18. (1) Since, $T^{2}=k r^{3}$

Differentiating the above equation
$\Rightarrow 2 \frac{\Delta T}{T}=3 \frac{\Delta r}{r} \Rightarrow \therefore \frac{\Delta T}{T}=\frac{3}{2} \frac{\Delta r}{r}$.
19. (1) As medium changes, optical path changes.

Also, $\frac{\Delta x}{\lambda}=\frac{\Delta \phi}{2 \pi}$
Hence phase difference changes.
20. (4) $\sin \theta=\frac{m \lambda}{a}$
when a increases, θ decreases, width decreases so intensity will increases.
21. (4) Power in primary of transformer is
$P_{P}=V_{p} \cdot I_{P}=220 \times 0.5=110 \mathrm{~W}$
But power in secondary of transformer is
$\mathrm{Ps}=100 \mathrm{~W}$
$\therefore \eta=\frac{100}{110}=0.9=90 \%$
22. (4) $\sqrt{\frac{3 R T}{2}}=\sqrt{\frac{3 R(320)}{32}}$
$T=\frac{320}{16}=20 K$.
23. (2) Area under a-t graph = change in velocity $\frac{1}{2} \times 8 \times 10=v-0$ or $v=40 \mathrm{~m} / \mathrm{s}$
24. (4) The last two resistances are out of circuit. Now
8Ω is in parallel with $(1+1+4+1) \Omega$
$\therefore R=8 \Omega \| 8 \Omega=\frac{8}{2}=4 \Omega ; R_{A B}=4+2+2=8 \Omega$
25. (2) Transition from higher states to $n=2$ lead to emission of radiation with wavelengths 656.3 nm and 365.0 nm . These wavelengths fall in the visible region and constitute the Balmer series.
26. (1)

Rate of flow of heat,

$$
H=H_{1}+H_{2}
$$

$\frac{3 K(100-T) A}{l}=\frac{2 K(T-50) A}{l}+\frac{K(T-0) A}{l}$
$3(T-100)=2(50-T)+(0-T)$
$3 \mathrm{~T}-300=100-2 T-T$
$6 T=400$
$T=\frac{400}{6}=\frac{200}{3}{ }^{\circ} \mathrm{C}$
27. (3) $\phi=\vec{E} \cdot \vec{A}=(3 \hat{i}+10 \hat{j}-2 \hat{k}) \cdot(60 \hat{i})$ $=180$
28. (4) From $t=0$ to $t=\frac{T}{2}, \frac{d I}{d t}=$ positive constant $e=-L \frac{d I}{d t}$ is negative constant

From $t=\frac{T}{2}$ to $t=T, \frac{d I}{d t}=$ negative constant $\therefore e=-L \frac{d I}{d t}$ is positive constant.
29. (1)
30.
(2) W.D. $=\frac{m}{4} g \cdot \frac{l}{8}=\frac{m g l}{32}$
31. (1) $\frac{I}{A}=j$ and $j=\frac{E}{\rho}$
$\therefore j_{A}>j_{B}$ and $E_{A}>E_{B}$.
32. (3) As stress is shown on x-axis and strain on y axis, so we can say that
$Y=\cot \theta=\frac{1}{\tan \theta}=\frac{1}{\text { slope }}$
So elasticity of wire P is minimum and of wire R is maximum.
33. (4) Retarding torque is constant. Therefore , angular retardation, say, α will also be constant. Applying,
$\omega^{2}=\omega_{0}^{2}-2 \alpha \theta$
we get,
$\left(\frac{\omega_{0}}{2}\right)^{2}=\omega_{0}^{2}-2 \alpha \theta_{1}$
and $0=\left(\frac{\omega_{0}}{2}\right)^{2}-2 \alpha \theta_{2}$
Solving Eqs. (i) and (ii), we get
$\theta_{2}=\frac{\theta_{1}}{3}$
Therefore, the disc will make $\frac{n}{3}$ more rotations before coming to rest.
34. (4) The S.I. relation is $B=\mu_{0}(H+M)$
35. (3) We know that, $\vec{L}=I \vec{\omega}$
$\therefore \frac{d L}{d t}=I \frac{d \vec{\omega}}{d t}=I \vec{\alpha} \Rightarrow \frac{d \vec{L}}{d t}=\vec{\tau}(\because \vec{\tau}=I \vec{\alpha})$
If $\vec{\tau}=0$, then $\frac{d \vec{L}}{d t}=0$ i.e., $\vec{L}=$ constant vector

SECTION - B (Attempt Any 10 Questions)

36. (3) $1 \mathrm{st} \mathrm{SHM}, y_{1}=8 \sin (2 \pi t+\pi / 2)$;
amplitude $a_{1}=8$ unit
2nd SHM, $y_{2}=2 \sin (2 \pi t)+2 \sqrt{3} \cos (2 \pi t)$
So amplitude $=\sqrt{2^{2}+(2 \sqrt{3})^{2}}=4$
\therefore Amplitude, $a_{2}=4$ unit $\frac{a_{1}}{a_{2}}=\frac{8}{4}=\frac{2}{1}$.
37. (2) Given, $v \frac{d v}{d x}=-\omega^{2} x$

Integrating it, within the limits of motion, we have
$\int_{v_{0}}^{v} v d v=\int_{0}^{x}-\omega^{2} x d x$
or $\left(\frac{v^{2}}{2}\right)_{v_{0}}^{v}=-\omega^{2}\left(\frac{x^{2}}{2}\right)_{0}^{x}$
or $v^{2}-v_{0}^{2}=-\omega^{2} x^{2}$ or $v=\sqrt{v_{0}^{2}-\omega^{2} x^{2}}$.
38.
(2) $y_{2}=a_{2} \cos \left(\omega t-\frac{2 \pi x}{\lambda}+\phi\right)$
$=a_{2} \sin \left[\frac{\pi}{2}+\left(\omega t-\frac{2 \pi x}{\lambda}+\phi\right)\right]$
compare it with $y_{2}=a_{1} \sin \left(\omega t-\frac{2 \pi x}{\lambda}\right)$
Phase diff. $=\left(\frac{\pi}{2}+\phi\right)$
\therefore Path diff. $=\frac{\lambda}{2 \pi}\left(\frac{\pi}{2}+\phi\right)$
39. (4) $\sin C=\frac{\sqrt{3}}{2}$

$\sin r=\sin \left(90^{\circ}-C\right)=\cos C=\frac{1}{2}$
$\frac{\sin \theta}{\sin r}=\frac{\mu_{2}}{\mu_{1}}$
$\Rightarrow \sin \theta=\frac{2}{\sqrt{3}} \times \frac{1}{2}$
$\Rightarrow \theta=\sin ^{-1} \frac{1}{\sqrt{3}}$.
40. (1) $\frac{d y}{d x}=\tan \theta=\frac{x}{2}=\mu=\frac{1}{2}$
$x=1, y=\frac{1}{4}$
41. (1) For first diagram, $Y=\overline{\bar{A}} \cdot \bar{B}$

A	B	\bar{A}	\bar{B}	$\bar{A} \cdot \bar{B}$	$(\overline{\bar{A}} \cdot \overline{\bar{B}})$
0	0	1	1	1	0
0	1	1	0	0	1
1	0	0	1	0	1
1	1	0	0	0	1

42. (2) Correct diameter of the ball
$=$ MSR + CSR $\times($ Least count $)-$ Zero error
$=0.5 \mathrm{~cm}+25 \times 0.001-(-0.004)$
$=0.5+0.025+0.004=0.529 \mathrm{~cm}$.
43. (4) Lets say radius of small droplets is r and that of big drop is R
$\frac{4}{3} \pi R^{3}=1000 \frac{4}{3} \pi r^{3} \Rightarrow \mathrm{R}=10 \mathrm{r}$
$U_{i}=1000\left(4 \pi r^{2} S\right)$
$U_{f}=4 \pi R^{2} S \quad \Rightarrow \quad=100\left(4 \pi r^{2} S\right)$
$U_{f}=\frac{1}{10} U_{i}$
44. (2) $u=\epsilon_{0}\left(E_{r m s}\right)^{2}=\frac{1}{2} \epsilon_{0} E_{0}^{2}$

$$
\begin{aligned}
& =\frac{1}{2}\left(8.85 \times 10^{-12}\right)(100)^{2} \\
& =4.425 \times 10^{-8} \mathrm{~J} \mathrm{~m}^{-3}
\end{aligned}
$$

45. (3) the particles will not collide if

$$
d>2\left(r_{1}+r_{2}\right)
$$

or $\quad d>2\left(\frac{m v_{1}}{B q}+\frac{m v_{2}}{B q}\right)$
or $d>\frac{2 m}{B q}\left(v_{1}+v_{2}\right)$
46. (1) For emission, the wave number of the radiation is given as
$\frac{1}{\lambda}=R z^{2}\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)$
$R=$ Rydberg constant, $Z=$ atomic number
$=R\left(\frac{1}{1^{2}}-\frac{1}{5^{2}}\right)=R\left(1-\frac{1}{25}\right) \Rightarrow \frac{1}{\lambda}=R \frac{24}{25}$
linear momentum
$P=\frac{h}{\lambda}=h \times R \times \frac{24}{25}$ (de-Broglie hypothesis)
$\Rightarrow m v=\frac{24 h R}{25} \Rightarrow v=\frac{24 h R}{25 m}$.
47. (3) The speed of sound (v) in air by resonance tube method is given by,
$v=2 f\left(l_{2}-l_{1}\right)$
$v=2 \times 480 \times(70-30) \times 10^{-2}$
$v=38400 \times 10^{-2} \mathrm{~m} / \mathrm{s} \Rightarrow v=384 \mathrm{~m} / \mathrm{s}$
48. (4) $\Delta \lambda=\lambda_{K_{\alpha}}-\lambda_{\text {min }}$.

When V is halved, $\lambda_{\text {min. }}$, becomes two times but $\lambda_{K_{\alpha}}$ remains the same
$\therefore \Delta \lambda^{\prime}=\lambda_{K_{\alpha}}-2 \lambda_{\text {min. }}=2(\Delta \lambda)-\lambda_{K_{\alpha}}$
$\therefore \Delta \lambda^{\prime}<2(\Delta \lambda)$.
49. (3)

$\left(\vec{E}_{\text {net }}\right)_{P}=0$
$\frac{k q}{x^{2}}=\frac{k \cdot 3 q}{(r-x)^{2}} \Rightarrow(r-x)^{2}=3 x^{2}$
$r-x=\sqrt{3} x \Rightarrow x=\frac{r}{\sqrt{3}+1}$
50.

$\mathrm{v}^{2}=2 g L \Rightarrow \mathrm{v}=\sqrt{2 g L}$

$2 m \mathrm{v}=(2 m+2 m) \mathrm{v}^{\prime}$
$\mathrm{v}^{\prime}=\frac{\mathrm{v}}{2}=\sqrt{\frac{g L}{2}}<\sqrt{2 g L}$

$0=\mathrm{v}^{\prime 2}-2 g h \Rightarrow \frac{g L}{2}=2 g h$
$h=\frac{L}{4}=\frac{5}{4}=1.25 \mathrm{~m}$.

CHEMISTRY

SECTION - A (35 Questions)

51. (4) $\mathrm{pK}_{\mathrm{w}}=\mathrm{pH}+\mathrm{pOH}$

As $\quad\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right]$
$\therefore \quad \mathrm{pK}_{\mathrm{w}}=2 \times \mathrm{pH}$
$\therefore \quad \mathrm{pH}=13.26 / 2=6.63$
52. (4) $\mathrm{Li}=1 \mathrm{~s}^{2} 2 \mathrm{~s}^{1}, \mathrm{Be}=1 \mathrm{~s}^{2}, 2 \mathrm{~s}^{2}, \mathrm{~B}=1 \mathrm{~s}^{2}, 2 \mathrm{~s}^{2}, 2 \mathrm{p}^{1}$. $\mathrm{C}=1 \mathrm{~s}^{2}, 2 \mathrm{~s}^{2} 2 \mathrm{p}^{2}$.
Be is highly stable due to filled s-orbitals, therefore $\mathrm{Be}{ }^{\ominus}$ is highly unstable.
53. (3) If assertion is true but reason is false
54. (2) Ketones does not react with tollen's reagent
55. (4) Stability \rightarrow Aromatic $>$ non aromatic $>$ antiaromatic
56. (1) (A), (B), (C)
57. (3) Colloidal solution in which the dispersed phase has very little affinity for the dispersion phase are termed as lyophobic. Lyophobic sols are less stable. On evaporation of solvent, the residue cannot be easily transformed back into colloidal state by ordinary means. therefore, they are also called as irreversible colloids.
58. (4) $\mathrm{Fe}^{+3}=\mathrm{d}^{5}=\mathrm{t}_{2 \mathrm{~g}}^{3} \mathrm{e}_{\mathrm{g}}^{2}, \mathrm{CFSE}=0$.
59. (3) Fe is present in the form of complex ion, i.e., $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{3-}$ which does not et ionised to give Fe^{3+} and CN^{-}.
60. (2) Benzene is formed in second reaction.
(1)
 (2)

(3)

(4)

61. (4) (1)-(iii); (2)-(iv); (3)-(ii); (4)-(i)
62. (2) $q+w=\Delta U$
$\mathrm{V}=\mathrm{constant} \Rightarrow \mathrm{w}=-\mathrm{pdv}=0$
$\Rightarrow \mathrm{q}=\Delta \mathrm{U}$
63. (2) Not expected to absorb visible light unpaired electron is zero.
i.e., $\left[\mathrm{Ni}(\mathrm{CN})_{4}\right]^{-2}$
64. (2) Moving phase is liquid and stationary phase is liquid
65. (3) Rate of reaction can increase with concentration of reactant in the case of positive order and the same can decrease in the case of negative order.
66. (2)

Cyano group has the highest priority therefore, parent name must be benzonitrile. Br occurs at 2-position, and hydroxyl at 3-position, hence the IUPAC name is 2-bromo-5-hydroxy benzonitrile.
67. (4) We know that lanthanides La, Gd shows +3 , oxidation state, while Eu shows oxidation state of +2 and +3 . Am shows $+3,+4,+5$ and +6 oxidation states, Therefore Americium (Am) has maximum number of oxidation states.
68. (2) $\pi=i C R T \quad C=\frac{N}{n}$
$(i)_{\mathrm{KCl}}=2 \mathrm{C}_{\mathrm{kCl}}=1$
$(\mathrm{i})_{\mathrm{K}_{2} \mathrm{SO}_{4}}=3 \quad \mathrm{C}_{\mathrm{K}_{2} \mathrm{SO}_{4}}=\frac{1}{2}$
$(\mathrm{i})_{\mathrm{K}_{3} \mathrm{PO}_{4}}=4 \quad \mathrm{C}_{\mathrm{K}_{3} \mathrm{PO}_{4}}=\frac{1}{3}$
$\pi \propto \mathrm{iC}$
$\pi_{\mathrm{KCl}}: \pi_{\mathrm{K}_{2} \mathrm{so}_{4}}: \pi_{\mathrm{K}_{3} \mathrm{PO}_{4}}$
$=2: \frac{3}{2}: \frac{4}{3}$
$=12: 9: 8$
69. (2)

70. (3) $\mathrm{In}_{5} \mathrm{H}_{5} \mathrm{IO}_{6} \mathrm{OS}$ of I is +7 i.e. in it's maximum us hence can only undergo reduction.
71. (4) All are correct
72. (1) Both the statements (I) and (II) are true
73. (1) 1 mL of CS_{2} weighs 2.63 g .
$10 \mathrm{~mL}^{\text {of }} \mathrm{CS}_{2}$ will weigh 26.3 g .

$\mathrm{CS}_{2}+3 \mathrm{O}_{2} \rightarrow$
$12+(2 \times 32)$
76 g

$\underbrace{\mathrm{CO}_{2}+2 \mathrm{SO}_{2}}_{67.2 \mathrm{~L}}$
$\therefore 76 \mathrm{~g}$ of CS_{2} will yield 67.2 L of a mixture of CO_{2} and SO_{2} and SO_{2} at STP.
$\therefore 26.3 \mathrm{~g}$ of CS_{2} would yield

$$
\frac{67.2}{76} \times 26.3=23.25 \mathrm{~L}
$$

Y is limiting reagent and hence will get completely consumed.
\Rightarrow Theoretical yield $=2$ moles
Actual yield $=1.75$ moles
$\%$ yield $=\frac{(\text { yield })_{\text {act }}}{\left(\text { yield }_{t h}\right.}=\times 100$
$=\frac{1.75}{2} \times 100=87.5 \%$
75. (3)

in -2 and +6 oxidation state.
76. (4) CIF_{3} is used for preparation of UF_{6} in the enrichement of ${ }_{92}^{235} \mathrm{U}$.
77. (2) Second Reaction is not possible due to partial double bond character between benzene and bromine.
78. (2)

79. (3) Overall reaction;

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longrightarrow 2 \mathrm{H}_{2} \mathrm{O}(l)
$$

(Hydrogen -Oxygen fuel cell)
80. (1) \Rightarrow no. of O atoms $=10$ moles $=10 \mathrm{~g}$ atoms
81. (1) Conceptual fact.
82.
(2) $\stackrel{\oplus}{\mathrm{N}} \mathrm{H}_{4}>\mathrm{NH}_{3}>\stackrel{\oplus}{\mathrm{N}} \mathrm{H}_{2}$
(2)

A zwitter ion is formed by transfer of a proton from a -COOH groups to an $-\mathrm{NH}_{2}$ group.
84. (3) Cannizzaro reaction takes place in basic medium
85. (1) Those compound which accept H^{+}are called bronsted base, here NO_{3}^{-}accept H^{+}and forms HNO_{3}. So it is a bronsted base.

SECTION - B (Attempt Any 10 Questions)

86. (2) $\mathrm{CH}_{3} \mathrm{CHOHCH}_{2} \mathrm{CH}_{3}$

87. (2) $k t=2.303 \log \frac{\mathrm{Ro}}{\mathrm{Rt}}$
$\Rightarrow \frac{1.15 \times 10^{-5} \times 3600}{2.303}=\log \frac{\mathrm{Ro}}{\mathrm{Rt}}$
$\Rightarrow \log \frac{\mathrm{R}_{\mathrm{o}}}{\mathrm{R}_{\mathrm{T}}}=0.018$
$\frac{\mathrm{R}_{\mathrm{o}}}{\mathrm{R}_{\mathrm{T}}}=1.042$
$\frac{\mathrm{R}_{\mathrm{T}}}{\mathrm{R}_{\mathrm{o}}}=0.9596$
Percentage of remaining reactant $=\frac{R_{T}}{R_{o}} \times 100$
= 95.96 \%
88. (4) A-(iv); B-(i); C-(ii), D-(iii)
89. (4)

90. (2) $\alpha=\frac{\Lambda_{\mathrm{m}}}{\Lambda_{\mathrm{m}}^{\circ}}=\frac{7.8}{390}=0.02$
$\left(\mathrm{K}_{\mathrm{a}}\right)_{\mathrm{CH}_{3} \mathrm{COOH}}=\frac{\mathrm{c} \alpha . \mathrm{c} \alpha}{\mathrm{c}-\mathrm{c} \alpha}$
$=\frac{c \alpha^{2}}{1-\alpha}=\frac{0.04 \times(0.02)^{2}}{1-0.02} \approx 1.6 \times 10^{-5}$
Use: $\mathrm{pK}_{\mathrm{a}}+\mathrm{pK}_{\mathrm{b}}=\mathrm{pK}_{\mathrm{w}}=14$
$\Rightarrow \mathrm{pK}_{\mathrm{b}}=14-\mathrm{pK}_{\mathrm{a}}=14-4.8=9.2$
91. (3) All Al-Cl(terminal) bonds are shorter than all
$\mathrm{Al}-\mathrm{Cl}$ (bridged) bonds
92. (3) (i)-(b), (ii)-(a), (iii)-(d), (iv)-(c)
93. (1) $\left[\mathrm{N}_{2}\right]$ and $\left[\mathrm{H}_{2}\right]$ start from non-zero value, decrease \& then become constant.
$\left[\mathrm{NH}_{3}\right]$ start from zero, increase \& then become constant.
94. (4) The overlap of a lone pair on the C atom with the empty hybrid metal orbital forms a metal-tocarbon σ-bond. The transition metal atom in a
metal carbonyl has filled non-bonding d-orbitals which are of proper symmetry to overlap with the anti-bonding orbitals of CO. The electronic charge is transferred from the filled non-bonding orbitals of the metal to π^{*} orbitals of the ligand CO. This reduces the bond order of CO . The π back bonding strengthens the $\mathrm{M}-\mathrm{C}$ bond order, it weakens the $\mathrm{C}-\mathrm{O}$ bond order.
95. (1) This reaction follows $\mathrm{S}_{\mathrm{N}} 1$ mechanism
96. (2) Spontaneity of reaction depends on tendency to acquire minimum energy state and maximum randomness. For a spontaneous process in an isolated system the total change in entropy is positive.
97. (1) SO_{2} readily decolourises pink violet colour of acidified KMnO_{4} solution.

$$
\begin{aligned}
\underset{\text { (Pinkviolet) }}{2 \mathrm{KMnO}_{4}}+5 \mathrm{SO}_{2} & +2 \mathrm{H}_{2} \mathrm{O} \longrightarrow \\
& \mathrm{~K}_{2} \mathrm{SO}_{4}+\underset{\text { (Colourless) }}{2 \mathrm{MnSO}_{4}}+2 \mathrm{H}_{2} \mathrm{SO}_{4}
\end{aligned}
$$

98. (1) A and B
99. (2) It is Mn^{2+} having five unpaired electrons so its magnetic moment is:
$\mu=\sqrt{5(5+2)}=5.9$ B. M.
100. (3)

Butane

2, 5-dimethyl
isohexane hexane
112. (2) (NCERT XI Pg. No. 210, 212, 13.6.1, 213, $2^{\text {nd }}$ paragraph)
113. (2) (NCERT 12 ${ }^{\text {th }}$, Page no-22, last paragraph, Line no-1)
(NCERT 12 ${ }^{\text {th }}$, Page no-23, last paragraph, Line no-1and 2)
(NCERT 12 ${ }^{\text {th }}$, Page no-24, first paragraph, Line no-1, 2 and 3)
114. (2) (NCERT XI Pg.235, $1^{\text {st }}$ Para, $2^{\text {nd }}$ line)
115. (4) [NCERT XI, Page 240, Point 15.1]
116. (2) [NCERT XI, Page 250, Point 15.4.3.5]
117. (4) [NCERT XI, 249 (Point- 15.4.3.3), 248
(Point 15.4.3.1 First paragraph) and Page 247 (Point 15.4.1)]
118. (4) (NCERT $12^{\text {th }}$, Page no-28, last paragraph, Line no-5-10)
119. (2) (NCERT 11 ${ }^{\text {th }}$, Page no-23, $1^{\text {st }}$ paragraph, Line no-6,7,8)
120. (1) (NCERT Page no- 21, Paragraph- 2.2.4)
121. (2 [NCERT class XI, Page no. 02 and Class XII, Page no. 02]
122. (2) (NCERT XI Page No. 72; Sub-topic 5.5; Page No. 79 Sub-topic 5.9.1 \& added family Poaceae)
123. (3) (NCERT XI Page No. 78; Sub-topic 5.8)
124. (1) (NCERT XII, Pg 106, Para 5, Line 7)
125. (2) (NCERT XII, Pg 97, based on DNA structure)
126. (3) (11th Para 10.2.2, 10.2.3, Page no.165,166)
127. (2) (NCERT XI Pg.233, $2^{\text {nd }}$ Para, $1^{\text {st }}$ line \& $3^{\text {st }}$ line)
128. (1) (NCERT XII, Genetics Terminology)
129. (1) (NCERT XII, Pg 87,Para 1, Line 1)
130. (1) (NCERT XII, Pg 86, Para 1, Line 19)
131. (2) (11th Para 8.5 .9 based conceptual/Page no.138)
132. (4) (NCERT XI Pg. No. 220, 13.9, 3 rd paragraph)
133. (3)(NCERT 11 ${ }^{\text {th }}$, Page no-10, paragraph-1.3.4, Line no-9,10)
134. (2) (NCERT 12 ${ }^{\text {th }}$, Page no-28, $1^{\text {st }}$ and $2^{\text {nd }}$ paragraph, Line no-3,4, 24,25)
135. (4) (11 th Para 8.5.6, Page no.136)

SECTION - B (Attempt Any 10 Questions)

136. (4) [NCERT class XI, Page no. 92 (Line no. 08-09), 93 (First paragraph)]
137. (3) (NCERT XI Page No. 75; Sub-topic 5.5.1.4)
138. (3) $\left(12^{\text {th }}\right.$ NCERT Page no. $\left.242,14.1\right)$
139. (2) (NCERT 12 ${ }^{\text {th }}$, Page no-26, first paragraph, Line no-5,6,7)
140. (4) (NCERT $11^{\text {th }}$, Page no-26, $1^{\text {st }}$ paragraph, Line no-9,10)
141. (2) (NCERT $11^{\text {th }}$, Page no-21, Paragraph2.2.3, Line no-16,17,18)
142. (3) ($11^{\text {th }}$ NCERT Page no. $33,1^{\text {st }}$ para)
($11^{\text {th }}$ NCERT PK. Page no. 23 to 24)
143. (4) (NCERT $11^{\text {th }}$, Page no-6, Last paragraph, Line no-31-34)
144. (1) (NCERT XI Page No. 217, fig. 13.8)
145. (1) (11th Para 8.5.5, Page no.135, 136)
146. (4) (NCERT XI Pg.235, 14.6, $2^{\text {nd }}$ Para, $9^{\text {st }}$ line)
147. (1) (11th Para 10.2.2, 10.2.3, Page no.165,166)
148. (3) (NCERT XII, Pg 102, based on HersheyChase experiment)
149. (3) (NCERT XII, Pg 106, Para 2, Line 3)
150. (4) (NCERT XII, Pg 71, Based on Monohybrid cross)

ZOOLOGY

Section - A (35 Questions)

151. (1) (NCERT $11^{\text {th }}$, Page no-150, $1^{\text {st }}$ paragraph, Figure-9.3c)
152. (2) (NCERT XI Page No. 57, Class-amphibia)
153. (2) [NCERT P.No.211, gene therapy, $2^{\text {nd }}$ para 4rd Line]
154. (4) (NCERT XI Page No. 53, phylum arthropoda)
155. (2) (NCERT XI Page No. 298, 3rd paragraph, 3rd line)
156. (2) (Page No. 159 Cannabinoids)
157. (1) (NCERT 12 ${ }^{\text {th }}$, Page no-131, 2nd paragraph, Line no-27-29)
158. (3) (NCERT 12 ${ }^{\text {th }}$, Page no-137, 2nd paragraph, Line no-19, conceptual)
159. (4) (NCERT 12 ${ }^{\text {th }}$, Page no-137, paragraph-3, Line no-6 to 8)
160. (4) $\left(12^{\text {th }}\right.$ NCERT Page no. $2301^{\text {st }}$ para $)$
161. (4) (NCERT 12 ${ }^{\text {th, } \mathrm{p}}$.no 42, para1)
162. (3) (NCERT 12 ${ }^{\text {th, }}$. no 54, para3,4)
163. (1) [NCERT P.No. $31012^{\text {th }}$ Line]
164. (3) NCERT P. No. 321 Forebrain Last 4 lines]
165. (3) (NCERT XI Page No. 294, 2nd line of 2 nd paragraph)
166. (3) (NCERT XI Page No. 336, 6th line of 3rd paragraph)
167. (2) (NCERT 11 ${ }^{\text {th }}$ p.no 119 , para1, line13)
168. (3) (NCERT Pg. No. 268 Respiratory organ)
169. (1) (NCERT Pg. No. 284 Cardiac cycle)
170. (2) (Page No. 153-Immune System)
171. (4) (12 ${ }^{\text {th }}$ NCERT Page no.261, 15.1.2)
172. (4) (12 $2^{\text {th }}$ NCERT Page no. $267,2^{\text {nd }}$ para)
173. (4) (NCERT $11^{\text {th }}$, Page no-146, paragraph- 9.3, Line no-10-13)
174. (2) (NCERT 11 ${ }^{\text {th }}$, Page no-146, Table-9.3)
175. (2) (NCERT 11 ${ }^{\text {th }, ~ p . n o ~ 103, ~ p a r a 2) ~}$
176. (2) (NCERT 12 ${ }^{\text {th }}$ p. no 61,62)
177. (1) [NCERT P.No. 312 Synovial Joints $5^{\text {th }}$ Line]
178. (2) [NCERT P.No. 310 Last Para]
179. (4) (NCERT $12^{\text {th }}$, p.no 63 , STD)
180. (2) (12th Para 10.5, Page no. 185, 186.)
181. (3) [NCERT P. No. 317 First para Last 4 Lines]
182. (4) [NCERT P.No.198, Gel Electrophoresis]
183. (3) (NCERT Pg No. 158- Treatement of Cancer)
184. (2)(NCERT Pg. 158-159)
185. (2) (NCERT 12 ${ }^{\text {th }}$ p. no 64, para1)

SECTION - B (Attempt Any 10 Questions)

186. (2) (12 ${ }^{\text {th }}$ NCERT Page no. 233 to 234)
187. (1) (NCERT 12 ${ }^{\text {th }}$, Page no-129, paragraph-7.9, Line no-19, conceptual)
188. (4) (NCERT 11 ${ }^{\text {th }}$, Page no-144, $2^{\text {nd }}$ paragraph, Line no-16,17)
189. (1) (NCERT XI Page No. 55 and 56 class chondrichthyes)
190. (3) (NCERT XI Page No. 333, 16th line of 1st paragraph)
191. (1) (NCERT 11 th p.no 114, para2, line2)
192. (3) [NCERT P.No. $3062^{\text {nd }}$ para last Line]
193. (3) (NCERT $12^{\text {th, }}$ p.no 48 , para3, line3)
194. (4) [NCERT P.No.200, Point 5, $14^{\text {th }}$ Line]
195. (2) [NCERT P.No.209, $8^{\text {th }}$ and $9^{\text {th }}$ Line]
196. (2) [NCERT P. No. $3217^{\text {th }}$ and $15^{\text {th }}$ Line]
197. (3) (12th Para 10.6, Page no.188)
198. (1) (NCERT Pg. No. 269 Human Respiratory system)
199. (4) (Page No. 145 Introduction)
200. (2) (NCERT Pg. No. 286 - Double circulation)
