1. (2) Gases occupy the volume of container. So they don't have definite volume or shape. Liquids don't have definite shape but have definite volume.
2. (3) Salt and sugar don't form homogeneous mixtures pulses and grains also don't form homogeneous mixtures.
3. (4) $1 \mathrm{~L}=1000 \mathrm{~cm}^{3}=1 \mathrm{dm}^{3}=10^{-6} \mathrm{~m}^{3}$
4. (4) 1.93 and 1.95 are close to each other but are far away than actual value. So they are precise but not accurate.
5. (1) 100 - one significant digit, zeroes on the right of non-zero digit should not be counted.
6. (3) One amu is equal to $\frac{1}{12}$ th of mass of one atom of $\mathrm{C}-12$ isotope. 16 amu means 16 times heavier than $\frac{1}{12}$ th of mass of one atom of C-12 isotope.
7. (1) Molecular mass = mass of one molecule

Molar mass $=$ mass of one mole molecule
Hence, molecular mass is lesser than molar mass.
08. (2) 72 g glucose

Since 1999
moles $=\frac{72 \mathrm{~g}}{180 \mathrm{~g} / \mathrm{mol}}=0.4$ moles
no. of moles of H -atom $=0.4 \times 12=4.8$ moles
09. (4) One molecule of $\mathrm{H}_{2} \mathrm{O}$ has mass of 18 amu which is also equal to $18 \times 1.66 \times 10^{-24} \mathrm{~g}$.
10. (2) Moles $=\frac{4.07}{1} \quad \frac{24.27}{12} \quad \frac{71.65}{35.5}$

$$
\begin{array}{lll}
=4.07 & 2.02 & 2.02
\end{array}
$$

Dividing by leastnumber 2.02

$$
\begin{array}{lll}
=2 & 1 & 1
\end{array}
$$

Hence empirical formula is $\mathrm{H}_{2} \mathrm{CCl}$ empirical formula mass $=49.5$

Molar mass $=98.9 \quad$ Ratio $=0.5$
11. (3) Molecular formula $=($ empirical formula $) \times n$ n is equal to or more than 1
$\frac{\text { empirical formula }}{\text { molecular formula }}=\frac{1}{n}$ which must be less than or equal to 1 .

Hence it can never be more than 1.
12. (2) $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

1 mole CH_{4} reacts with 2 moles CH_{4}
$1 \mathrm{~mL} \mathrm{CH}_{4}$ reacts with $2 \mathrm{~mL} \mathrm{O}_{2}$
$1 \mathrm{~L} \mathrm{CH}_{4}$ reacts with $2 \mathrm{~L} \mathrm{O}_{2}$
1 mole CH_{4} gives 2 mole $\mathrm{H}_{2} \mathrm{O}$ vapours.
13. (1) When 3 g of N_{2} reacts with $3 \mathrm{~g} \mathrm{H}_{2}$

Moles of $\mathrm{N}_{2}=\frac{3}{28}$
\Rightarrow Moles of $\mathrm{H}_{2}=\frac{3}{2}$

Since, $\frac{3}{28 \times 1}<\frac{3}{2 \times 3}$
Hence N_{2} is the limiting reactant.
14. (3) Moles of methane $=2$ moles

For 2 moles methane, moles of water produced $=4$ moles
Since only 85% methane reacted,
Mass of water produced $=0.85 \times 4 \times 18=61.2$
15. (1) Avg. molar mass
$\Rightarrow 30=25 \mathrm{x}_{\mathrm{A}}+40\left(1-\mathrm{x}_{\mathrm{A}}\right)$
$\Rightarrow 30=-15 x_{\mathrm{A}}+40$

$$
\Rightarrow \mathrm{x}_{\mathrm{A}}=\frac{2}{3}
$$

Total moles $=\frac{\text { Given total mass }}{\text { Molar mass }}$

$$
=\frac{100}{30}=\frac{10}{3}
$$

Moles of $\mathrm{A}=\frac{2}{3} \times \frac{10}{3}=\frac{20}{9}=2.2$
16. (2) When dilution is done by adding the solvent the concentration of solution decreases. Hence all types of concentration decreases, but amount of solute remains same.
17. (1) 1) $9 \times 3.5 \mathrm{~N}_{\mathrm{A}}$
2) $2.4 \times 10^{24}=24 \times 10^{23}=4 \mathrm{~N}_{\mathrm{A}}$
3) $18 \mathrm{~N}_{\mathrm{A}}$
4) $21 \mathrm{~N}_{\mathrm{A}}$

Hence first option has highest number of O-atoms.
18. (2) $39.5=40 \mathrm{x}+36 \times 0.1+38(0.9-\mathrm{x})$
$39.5=2 x+3.6+34.2$
$=39.5=2 \mathrm{x}+37.8$
$1.7=2 \mathrm{x}$
$\Rightarrow 0.85=\mathrm{x}$
19. (2) Only second option satisfies the given condition of empirical formula. Here $\mathrm{n}=1$.
20. (4) $2.79=\frac{1000 \times \mathrm{M}}{1000 \times 1.25-58.5 \mathrm{M}}$

$$
\begin{gathered}
\Rightarrow 3487.5-163.2 \mathrm{M}=1000 \mathrm{M} \\
\mathrm{M}=\frac{3487.5}{1163.2}=3
\end{gathered}
$$

21. (4) Moles of $\mathrm{Na}_{2} \mathrm{CO}_{3}$

$$
=\text { Molarity } \times \text { Volume of solution(L) }
$$

Since volume of solution is not given, we cannot find the no. of moles.
22.
(2) i) $\frac{300}{1}>\frac{200}{1}$
ii) $\frac{2}{1}>\frac{1.5}{1}$
iii) $\frac{100}{1}>\frac{50}{1}$
iv) $\frac{3}{1}>i \frac{2.5}{1} e$

In all the cases B is the L.R.
23. (3) In 36 g glucose,

Moles of glucose $=\frac{36}{180}=0.2$
CAREERINST
No. of moles of O atoms $=6 \times 0.2=1.2$
No. of O atoms $=6 \times 0.2 \times \mathrm{N}_{\mathrm{A}}$
No. of glucose molecules $=0.2 \mathrm{~N}_{\mathrm{A}}$
No. of hydrogen atoms $=12 \times 0.2 \mathrm{~N}_{\mathrm{A}}$
24. (2) For compound $\mathrm{A} \Rightarrow \frac{\mathrm{X}}{\mathrm{Y}}=\frac{28}{16}$

For compound $\mathrm{C} \Rightarrow \frac{\mathrm{X}}{\mathrm{Y}}=\frac{28}{?}$
Ratio of Y in A to C is $1: 3$
$\therefore \mathrm{Y}$ in C is $16 \times 3=48$
25. (3) No. of O-atoms in $1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}=4 \mathrm{~N}_{\mathrm{A}}$

No. of O-atoms in $1 \mathrm{~mol} \mathrm{CaCO}_{3}=3 \mathrm{~N}_{\mathrm{A}}$
Hence statement-1 is false.
26. (4) When different compounds are formed by combining similar elements we apply law of multiple proportions.
27. (2) The product is always formed according to amount of limiting reactant. So if limiting reactant is same, amount of product should not change.

Stoichiometric coefficient represent moles or molecules of a substance involved in a reaction.

Hence both statements are correct, but statement-2 is not giving proper expalantion.
28. (3) Two molar solution of sulphuric acid has molarity equal to 2 . But to calculate the mass of sulphuric acid present, we must know the volume of solution which is not given. Hence statement-1 is false.

Statement-2 is the definition of molarity.
29. (1) Molality is moles of solute per kg of solvent. Since both moles and mass do not change with temperature, so molality is independent of temperature.
30. (4) Both temperature and pressure can be changed to change matter states. Gases can be converted to liquids by increasing pressure. Liquids can be converted into vapour by increasing temperature.
31. (3) Milli $=10^{-3}$, Nano $=10^{-9}$,

$$
\text { Deci }=10^{-1}, \text { Pico }=10^{-12}
$$

32. (3) ${ }^{\circ} \mathrm{F}=\frac{9}{5} \times{ }^{\circ} \mathrm{C}+32=\frac{9}{5}(-40)+32=-40^{\circ} \mathrm{F}$
33. (3) Number of moles of Fe atoms $=\frac{0.34 \times 3.3}{100 \times 56}$

Number of Fe atoms $=\frac{0.34 \times 3.3}{56 \times 100} \times 6.02 \times 10^{23}$

$$
=1.21 \times 10^{20}
$$

34. (1) 20 ppm means, 20 g solute in $10^{6} \mathrm{~g}$ solution
$\operatorname{mass} \%=\frac{20 \mathrm{~g}}{10^{6} \mathrm{~g}} \times 100=2 \times 10^{-3}$

$$
\therefore 20 \mathrm{ppm}=20 \times 10^{-4} \quad \% \frac{w}{w}
$$

35. (1) In the formation of NH_{3},

$$
\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}
$$

N_{2} and H_{2} can be present in any ratio, but they will react in the ratio $1: 3$. Hence statement- 1 is true. However statement-2 is correct.
36. (2) Sulphur has atomic mass of 32.

Since compound contains 8% sulphur.
Let molar mass of compound is M
$\Rightarrow 8 \%$ of $\mathrm{M}=32$
$\Rightarrow \mathrm{M}=\frac{32}{0.08}=400$
37. (1) Moles of $\mathrm{CO}_{2}=\frac{200 \times 10^{-3}}{44}$

Initial molecules $=\frac{200 \times 10^{-3}}{44} \times 6.02 \times 10^{23}$

Final molecules $=\frac{200 \times 10^{-3}}{44} \times 6.02 \times 10^{23}-10^{21}$

Final moles $=\frac{1.7 \times 10^{21}}{6.02 \times 10^{22}}=2.85 \times 10^{-3}$
38. (4) The S.I unit of volume is not litre. It is m^{3}.
39. (4) At given temperature and pressure, all gases do not occupy same volume. It depends upon their moles. According to ideal gas equation, $\mathrm{PV}=\mathrm{nRT}$,

Since, 1999
Volume occupied by gas depend upon pressure and temperature.

Hence, equal amount of all gases, at same temperature and pressure occupy equal volumes.
40. (3) Mass of 1 molecule of water $=18 \times 1.66 \times 10^{-24} \mathrm{~g}$

Volume $=\frac{\text { mass }}{\text { density }}=\frac{18 \times 1.66 \times 10^{-24}}{1}=30 \times 10^{-24}$

$$
=3 \times 10^{-23} \mathrm{~cm}^{3}
$$

41. (3) $\mathrm{C}_{2} \mathrm{H}_{4}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$
2.8 kg will require $9.6 \mathrm{~kg} \mathrm{O}_{2}$ because

28 kg ethylene requires $96 \mathrm{~kg} \mathrm{O}_{2}$.
42. (1) Mol is the unit of amount of substance while molarity is the unit of concentration.
43. (1) $\mathrm{M}_{\text {Final }} \times \mathrm{V}_{\text {Final }}=M V_{1}+M V_{2}$

$$
\mathrm{M}_{\text {Final }}=\frac{\mathrm{M}\left(\mathrm{~V}_{1}+\mathrm{V}_{2}\right)}{\mathrm{V}_{\text {Final }}}=\mathrm{M}
$$

44. (1) Micro $=10^{-6}$, Deca $=10$,

$$
\text { Mega }=10^{6}, \text { Giga }=10^{9}, \text { Femto }=10^{-15}
$$

45. (4) Check limiting reactants in all cases and $\mathrm{H}_{2} \mathrm{O}$ will form according to limiting reactant.
(p) $\frac{10}{1}=\frac{5}{0.5}$ hence both are limiting reactant.
(q) $\frac{20}{1}>\frac{2.5}{0.5}$ hence O_{2} is L.R. so 5 volume will form.
46. (3) Molarity $=\frac{\text { Moles of solute }}{\text { Vol. of solution (L) }}$

$$
=\frac{\frac{\mathrm{w}_{1} / \mathrm{M}_{1} \times 1000}{\frac{\mathrm{w}}{\rho}}}{=\frac{1}{\rho}}
$$

47. (2) $\mathrm{CH}_{4}+2 \mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

16 g methane gives $44 \mathrm{~g} \mathrm{CO}_{2}$
Hence 8 g methane gives $22 \mathrm{~g} \mathrm{CO}_{2}$
48. (4) $1 \mathrm{dm}^{3}$ is same as 1 litre. So, it is equal to 1000 ml or $1000 \mathrm{~cm}^{3}$. Also $1 \mathrm{~m}^{3}=10^{3} \mathrm{~L}$ or $1 \mathrm{~L}=10^{-3} \mathrm{~m}^{3}$.
49. (3) There is no change in total mass of reaction mixture during a chemical reaction.
50. (3) Molality $=\frac{\text { Moles of solute }}{\text { Mass of solvent (kg) }}$

STRUCTURE OF ATOM (SOLUTION)

1. (4) 4 is correct i.e. high voltage, low pressure)

At high voltage of around 10000 volt applied then beam of rays arise from cathode which consists of negatively charged particle reaches to the anode.
At low pressure, no hindrance generated to the beam of cathode rays.
02. (3) Cathode, anode, anode
03. (4) Both (1) and (2)

Cathode rays get deflected in electric as well as magnetic field because of the charge (i.e., negative charge present on it)
04. (1) As we increases the charge on the particle, more deflection will occur in the presence of electric field.
05. (2) Canal rays depends upon the nature of gas taken in discharge tube.
06. (3) Millikan's oil drop experiment responsible for the discovery of charge of electron.
07 . (3) Avery α-particle (1 in 20000) were deflected by 180° because at the centre of an atom most of the mass is concentrated i.e., charge density is very high so, when it reaches near to the nucleus, it get back at an angle of 180°.
08. (4) Mass number can be whole number or a fraction. Mass number cannot be in fraction.
09. (1) Same mass number .

Since 1999
Isobar are there species which have same mass number and atomic number is different so chemical properties is different.
10. (3) ${ }_{17}^{35} \mathrm{Cl}^{-}$

As ${ }^{35} \mathrm{Cl}_{17}^{-} \rightarrow$ is ion \rightarrow Anion
$\mathrm{Z}=\mathrm{P} \neq \mathrm{e}, \quad \mathrm{Z}=17, \quad \mathrm{P}=17,4 \mathrm{REE} \mathrm{e}=18$
$\mathrm{A}=\mathrm{P}+\mathrm{n}, \quad \Rightarrow \mathrm{n}=\mathrm{A}-\mathrm{P}, \quad \Rightarrow \mathrm{n}=35-17=18$
11. (1)
12. (4) Energy decreases, λ increases, v decreases

Since we know that : $E \propto v \propto \frac{1}{\lambda}$
Decreasing energy order

Gamma rays β Rays α Rays X-Rays UV Rays Visible Infrared Microwaves Radio wave

Decreasing wavelength
13. (3) $v=\frac{c}{\lambda}, \quad \lambda=\frac{c}{v} \quad \frac{3 \times 10^{7} \times 5}{684}$
$v=\frac{c}{\lambda}, \lambda=\frac{c}{v}=\frac{3 \times 10^{8}}{1368}=2.192 \times 105 \approx 219.3 \mathrm{~m}$
14. (2) Diffraction

Wave nature of light \rightarrow Diffraction and interference
Particle nature of light \rightarrow Black body radiation
\rightarrow Photoelectric effect
15. (3) Only statement-1 is correct, but statement-2 is incorrect.
16. (4)

Kinetic energy is independent of photo intensity.
17. (2) $\mathrm{E}=\mathrm{W}+\mathrm{KE}$

$$
\frac{124 \times 1.6 \times 10^{-19}}{300} \mathrm{~J}=\mathrm{W}+\frac{1.68 \times 10^{5}}{6.022 \times 10^{23}}
$$

$6.6 \times 10^{-19} \mathrm{~J}=\mathrm{W}+0.278 \times 10^{-18}$
$0.66 \times 10^{-18} \mathrm{~J}-0.278 \times 10^{-18}=\mathrm{W}$
$\mathrm{W}=0.39 \times 10^{-18}=3.9 \times 10^{-19}$ Joule
18. (4) $\mathrm{n}^{2}, \frac{1}{\mathrm{n}^{2}} \quad \mathrm{r} \propto \frac{n^{2}}{Z} \quad E \propto-\frac{Z^{2}}{n^{2}}$
19. (4) $n_{i}<n_{b}$
20. (2) $m v r=\frac{h}{\pi} ®$ For $\mathrm{n}=2 \quad m v r=\frac{2 h}{2 \pi} \quad m v r=\frac{h}{\pi}$
21. (3) Heisenberg's uncertainty principle.
A / q to this principle, it states that it is impossible to find out position and velocity of electrons simultaneously.
22. (2) Total no. of orbitals in a subshell $=2 l+1$

For $l=5$, Total no. of orbitals $=2 \times 5+1=11$
23. (2) Principal Q. Number \rightarrow Size of shell

Azimuthal Q. Number \rightarrow Shape of subshell Magnetic Q. Number \rightarrow Orientation of orbital Spin Q. Number \rightarrow Spin of electron
24. (1)
25. (3) Half filled $4 s$ orbital and fully filled $3 d$ orbital $\mathrm{Cu}_{29}=1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 3 \mathrm{~d}^{10} 4 \mathrm{~s}^{1}$
26. (3)
27. (3) Different number of angular nodes but same number of total nodes.
$3 \mathrm{~s}=$ Radial node $=\mathrm{n}-l-1 \quad$ Angular node $=(l)$ Total node
$=3-0-1=2 \quad 0 \quad 2+0=2$
$3 p \begin{array}{ll}3-1-1=1 & 1\end{array}$
28. (1)
29. (3) $\lambda=4000 \times 10^{-12} \mathrm{~m} \quad 4 \times 10^{3} \times 10^{-12} \mathrm{~m}$
$\mathrm{E}=\frac{1240}{\lambda / n m} \mathrm{eV} /$ atom
30. (2) Hund's rule of maximum multiplicity
31. (3) Can't be negative
32. (2) $4 d>4 f \quad$ Increasing energy 1s 2 s 2 p 3 s 3 p 4 s 3 d 3 d 4 p 5 s 4 d 5 p 6 s
33. (2) Use the concept of $(\mathrm{n}+l)$ rule
34. (4) $\mathrm{KE}=\mathrm{q} \times \mathrm{V}_{0}$

$$
\begin{aligned}
& \frac{1}{2} m v^{2}=1.6 \times 10^{-19} \times .35 \\
& v^{2}=\frac{2 \times 1.6 \times 10^{-19} \times 0.35}{9.1 \times 10^{-31}}=0.12 \times 10^{-19+31} \\
& v=\sqrt{0.12 \times 1^{12}} \quad v=3.5 \times 10^{5}
\end{aligned}
$$

35. (2) Ist H -atom IInd H -atom

$$
\begin{array}{ll}
\mathrm{Z}=1 & \mathrm{Z}=1 \\
\mathrm{n}=5 & \mathrm{n}=1
\end{array}
$$

$$
\begin{aligned}
\frac{E_{1}}{E_{2}}=\left(\frac{Z_{1}}{Z_{2}}\right)^{2} \times\left(\frac{n_{2}}{n_{1}}\right)^{2} \quad & \frac{E_{H_{I}}}{E_{H_{I S}}}=\left(\frac{1}{1}\right)^{2} \times \frac{1}{2599} \\
& \frac{E_{I}}{E_{I I}}=\frac{1}{25} \text { or } \frac{1}{(5)^{2}}
\end{aligned}
$$

36. (3) Longest wavelength means energy, frequency and wave number is lowest.

$$
n_{2}=n_{1}+1
$$

For Balmer series : $\mathrm{n}_{1}=2 \Rightarrow \mathrm{n}_{2}=2+1=3$
$\Delta \mathrm{E}=13.6 \times(2)^{2} \times\left[\frac{1}{(2)^{2}}-\frac{1}{(3)^{2}}\right] \mathrm{eV} /$ atom
37. (2) 15 line

Maximum no.
of emission lines $=\frac{\left(n_{2}-n_{1}\right)\left(n_{2}-n_{1}+1\right)}{2}$

$$
=\frac{(6-1)(6-1+1)}{2}=\frac{5 \times 6}{2}=\frac{30}{2}=15 \text { lines }
$$

38. (3) $\mathrm{E}=-2.18 \times 10^{-18} \times \frac{Z^{2}}{n^{2}} \mathrm{~J}$

$$
\Delta E=2.18 \times 10^{-18} \times\left[\frac{1}{1}-\frac{1}{\infty^{2}}\right] \mathrm{J}
$$

$$
\Delta \mathrm{E}=2.18 \times 10^{-18} \text { Joule }
$$

For the $\mathrm{He}^{+} \rightarrow \mathrm{He}^{2+}+1 \mathrm{e}^{-}$
$\Delta \mathrm{E}=2.18 \times 10^{-18} \times \frac{4}{1} \mathrm{~T} \quad \Delta \mathrm{E}=8.72 \times 10^{-18}$ Joule

$$
\begin{aligned}
& 1 \text { Joule }=\frac{n 1240 \times 1.6 \times 10^{-19} \mathrm{~J}}{4} \\
& =\frac{1 \times 4}{1240 \times 1.6 \times 10^{-19}}=n=\frac{4 \times 10^{19}}{1984}=n \\
& n=2.0 \times 10^{16}
\end{aligned}
$$

39. (1)
40. (4) Take the reference of solution 12.
41. (2) All d-orbitals do not have similar shape.
$d_{x^{2}-y^{2}}, d_{x y}, d_{y z}, d_{x z} \Rightarrow$ Clover leaf like shape. $d_{z^{2}} \Rightarrow$ Doubnut shape
42. (4) i) Longest wavelength in Balmer series $=3 \rightarrow 2$
ii) Shortest energy of Lyman series $=2 \rightarrow 1$
iii) Longest frequency of Balmer series $=0 \rightarrow 2$
iv) 2 nd line of Lyman series means $=3 \rightarrow 1$
43. (1) $\Delta x\left((m . \Delta V) \geq \frac{h}{4 \pi} \quad 1.46 \times 1-33 \mathrm{~J}\right.$

$$
\begin{aligned}
\Delta x= & \frac{6.62 \times 10^{-34}}{40 \times 45 \times 2 \times 10^{-3}}=\frac{6.6 \times 10^{-34}}{3600 \times 10^{-1}} \\
& =\frac{6.6 \times 10^{-34}}{3.6} \approx 1.84 \times 10-34 \mathrm{~m}
\end{aligned}
$$

44. (3) (III) and (IV)
45. (4)
46. (4) 25

Total no. of orbitals in a shell $=(n)^{2}=(5)^{2}=25$
47. (1) Zeemen effect \Rightarrow Splitting of spectral lines in the presence of magnetic field.
Stark effect \Rightarrow Splitting of spectral lines in the presence of electric field.
48. (3) $\bar{v}=1.096 \times 10^{7} \times(1)^{2}\left[\frac{1}{1}-\frac{1}{\infty^{2}}\right]$

$$
\lambda=\frac{10^{-7} D}{1.0967}=0.911 \times 10^{-7}
$$

49. (3) $\mathrm{V}=3 d^{3} 4 s^{2} \quad \mu=\sqrt{3(3+2)}=\sqrt{15}=3.87$
$\mathrm{Cr}=3 \mathrm{~d}^{5} 4 \mathrm{~s}^{1} \quad \mu=\sqrt{6(6+2)}=\sqrt{48}=6.92$
$\mathrm{Mn}=3 \mathrm{~d}^{5} 4 \mathrm{~s}^{2} \quad \mu=\sqrt{5(5+2)}=\sqrt{35}=5.9$
50. (3) A) Orbital angular momentum $=\sqrt{l(l+1)} \frac{h}{2 \pi}$
B) Angular momentum $\mathrm{mvr}=\frac{n h}{2 \pi}$
C) Spin Angular momentum $\mathrm{SAM}=\sqrt{\mathrm{s}(\mathrm{s}+1)} \frac{h}{2 \pi}$
D) Magnetic momentum $=\sqrt{n(n+2)} B M$

CLASSIFICATION OF ELEMENTS \& PERIODICITY IN PROPERTIES (SOLUTION)

1. (1) According to IUPAC : $1 \Rightarrow$ Un, $8 \Rightarrow$ oct. $118 \Rightarrow$ ununoctium
2. (2) $\mathrm{Fe}^{+2} \Rightarrow 26-2=24 \mathrm{e}^{-}$
$\mathrm{Mn}^{+2} \Rightarrow 25-2=23 \mathrm{e}^{-}$

Not iso-electronic

3. (4) $\mathrm{C} \Rightarrow 12, \mathrm{~N} \Rightarrow 14, \mathrm{O} \Rightarrow 16$

Dobernier triad $\Rightarrow \frac{12+16}{2}=\frac{28}{2}=14$
But, C, N and O does not show similar properties, so it is not dobernier triad.
04. (3) Eka aluminium is Ga .
05. (1) $\mathrm{Ca}^{+2}<\mathrm{K}^{+}<\mathrm{Ar}$
$\mathrm{Ar} \Rightarrow$ noble gas (High radii in period)

Ionic raddii of cation $\propto \frac{1}{\text { Cation charge }}$
06. (1) $108 \Rightarrow$ Un + nil oct + ium \Rightarrow Unniloctium
07. (4) Electronic configuration of P is $[\mathrm{Ne}] 3 \mathrm{~s}^{2} 3 \mathrm{p}^{3}$
08. (2) Ionic radius $\propto \frac{1}{\text { Atomic no. }}$

Since 1999
09. (3) $\mathrm{CN}^{-} \Rightarrow 6+7+1 \Rightarrow 14 \mathrm{e}^{-}$ $\mathrm{CO} \Rightarrow 6+8 \Rightarrow 14 \mathrm{e}^{-}$
(in isoelectronic sp.)
[Isoelectronic]
(same no. of e^{-})
10. (1) $\mathrm{CO} \Rightarrow 6+8 \Rightarrow 14 \mathrm{e}^{-}, \mathrm{CN}^{-} \Rightarrow 6+7+1 \Rightarrow 14 \mathrm{e}^{-}$ $\mathrm{NO}^{+} \Rightarrow 7+8-1 \Rightarrow 14 \mathrm{e}^{-} \quad \mathrm{C}_{2}{ }^{2-} \Rightarrow 6+6+2 \Rightarrow 14 \mathrm{e}^{-}$
11. (3) Al has vaccant d-orbitals, so it can expand its valency to 6 .
12. (1) $\mathrm{As}_{2} \mathrm{O}_{3} \Rightarrow$ Amphoteric oxide

$$
\begin{aligned}
& \mathrm{N}_{2} \mathrm{O} \Rightarrow \text { Acidic } \\
& \mathrm{Na}_{2} \mathrm{O} \Rightarrow \text { Basic } \\
& \mathrm{Cl}_{2} \mathrm{O}_{7} \Rightarrow \text { Acidic }
\end{aligned}
$$

13. (3) Period \Rightarrow no. of shell \Rightarrow principle quantum no.
14. (4) Down the group metallic character increases and left to right metallic character decreases
15. (3) Left to right in period \Rightarrow non-metallic character increases.
16. (2) Oxidising property in period increases from left to right and decreases down the group.
17. $(3) \mathrm{O} \longrightarrow \mathrm{O}^{+}$
$2 s^{2} 2 p^{4} \quad 2 s^{2} 2 p^{3}$ (Half filled)
$\mathrm{B} \longrightarrow \mathrm{B}^{+}$
$2 s^{2} 2 p^{1} \quad 2 s^{2}$ (Full filled)
18. (3) $105 \Rightarrow$ Dubnium (Db)
19. (2) 4th period \Rightarrow includes s, p, d orbitals which are fille with $\mathrm{e}^{-}, \mathrm{s}+\mathrm{p}+\mathrm{d} \Rightarrow 18 \mathrm{e}^{-}$

$$
2+6+10
$$

20. (2) I.E. increases in period from left to right
$\mathrm{Be} \Rightarrow 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2}($ full filled $) \Rightarrow$ High I.E. compared to B.
21.

(3) $\mathrm{N}^{3-} \Rightarrow 7+3 \Rightarrow 10 \mathrm{e}^{-}$
[Same no. of e^{-}]
$\mathrm{Na}^{+} \Rightarrow 11-1 \Rightarrow 10 \mathrm{e}^{-}$
[Same no. of e^{-}]
22. (3) Gr. (15) \Rightarrow General configuration of valence shell is $\mathrm{ns}^{2} \mathrm{np}^{3} \Rightarrow 3+2 \Rightarrow 5$ valence e^{-}
23. (3) Fact based question.
24. (1) $Z=114$

Electronic configuration $\Rightarrow[\mathrm{Rn}] 5 \mathrm{f}^{14} 6 \mathrm{~d}^{10} 7 \mathrm{~s}^{2} 7 \mathrm{p}^{2}$
No. of valence e^{-}in valence shell $=2+2=4 \mathrm{e}^{-}$
General valence e^{-}configuration of gr. $(14) \Rightarrow \mathrm{ns}^{2} \mathrm{np}^{2}$
25. (1) $\mathrm{CO} \Rightarrow$ neutral

$$
\begin{aligned}
& \mathrm{BaO} \Rightarrow \text { (Metal oxide) } \Rightarrow \text { Basic } \\
& \mathrm{Al}_{2} \mathrm{O}_{3} \Rightarrow \text { (Amphoteric) } \\
& \mathrm{Cl}_{2} \mathrm{O}_{7} \Rightarrow \text { (Non-metal oxide) } \Rightarrow \text { Acidic }
\end{aligned}
$$

26. (1) $Z=29(\mathrm{cu}) \Rightarrow 4$ th period $\Rightarrow 3 \mathrm{~d}$ series.
27. (2) General d-block electronic configuration is

$$
(\mathrm{n}-1) \mathrm{d}^{1-10} \mathrm{~ns}^{0-2}
$$

28. (4) Higher the + ve charge smaller is ionic raddii.
29. (1) Higher the $Z_{\text {eff }} \Rightarrow$ Higher attraction on e^{-}and size decreases.
30. (2) $\mathrm{Na} \Rightarrow 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} 3 \mathrm{~s}^{1} \Rightarrow \mathrm{Na}$ is alkali metal easily donates e^{-}therefore lowest I.E.
31. (3) F is more oxidising than Cl , as down the group oxidising property decreases.
32. (3) Cl belongs to 3 rd period \Rightarrow have vaccant d-orbital, so can easily accomodate e^{-}and releases more energy.
33. (4) $\left[\mathrm{AlCl}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5}\right]^{+2}$
$\mathrm{x}+(-1)+5(0)=+2$
$\mathrm{x}-1=+2 \Rightarrow \mathrm{x}=+2+1=+3$
34. (3) e^{-}gain enthalpy order in halogens is
$\mathrm{Cl}>\mathrm{F}>\mathrm{Br}>\mathrm{I}$
35. (1) Due to small size of F atom $\Rightarrow l . \mathrm{p}-\mathrm{l} . \mathrm{p}$.

Repulsion between two F atoms is high and bond becomes weak and actual order is
$\mathrm{Cl}-\mathrm{Cl}>\mathrm{Br}-\mathrm{Br}>\mathrm{F}-\mathrm{F}>\mathrm{I}-\mathrm{I}$
36. (3) Noble gases have high I.E due to stable electronic configuration.
37. (4) $I . E_{1}$ of $N>I . E_{1}$ of O.
(Half filled configuration)
and across the period Zeff increases.
38. (3) $\mathrm{Be} \Rightarrow 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2}$ (Full filled configuration), so

$$
\text { I.E } E_{1} \text { of } B e>I . E_{1} \text { of } B
$$

and $2 \mathrm{~s} \Rightarrow 2+0 \Rightarrow 2 \quad(\mathrm{n}+l$ rule $)$

$$
2 \mathrm{p} \Rightarrow 2+1 \Rightarrow 3
$$

Higher the $(\mathrm{n}+l)$ value higher the energy.
1999
39. (4) Radius of noble gas is highest in period due to van der waals force of attraction.
$\mathrm{He} \Rightarrow$ small size noble gas \Rightarrow highest I.E
40. (1) Down the group no. of shells increases interelectronic repulsion increases and therefore shielding increases.
41. (3) Ionic radius $\propto \frac{1}{\text { Atomic no. (For isoelectronic sp) }}$

For anion \Rightarrow Higher the charge \Rightarrow Higher the radius
42. (2) Silver (Ag) and gold (Au) have nearly same atomic size due to lanthanoid contraction which is seen in 6th period.
43. (1) In isoelectronic species \Rightarrow for cation

Higher the charge of cation \Rightarrow smaller will be size.
44. (1) e^{-}gain enthalpy and I.E have same value but have opposite sign.
45. (1)

46. (1) Higher the charge of cation \Rightarrow smaller will be the size of ion.
47. (1) $\mathrm{He} \Rightarrow 1 \mathrm{~s} 2$ (small size)
48. (3) d-block elements are not radioactive.
49. (4) Electron affinity \uparrow ses from left to right in period.
50. (2) $\mathrm{NO} \Rightarrow$ Neutral
$\mathrm{As}_{2} \mathrm{O}_{3} \Rightarrow$ Amphoteric
$\mathrm{Cl}_{2} \mathrm{O}_{7} \Rightarrow$ Acidic (Non-metal oxide)
$\mathrm{Na}_{2} \mathrm{O} \Rightarrow$ Basic (Metal oxide)

MOLECULAR STRUCTURE \& CHEMICAL BONDING (SOLUTION)

1. (1) $\mathrm{PCl}_{5} \rightarrow \mathrm{Z}=$ no. of σ-bonds $+l . \mathrm{p}=5+0 \rightarrow 5$ Hybridisation $\rightarrow \mathrm{sp}^{3} \mathrm{~d}$
2.

03. (1) Bond length depends on atomic size of bonded atom.
04. (4) Bond length $\propto \frac{1}{\text { Bond order }}$

Bond order of $\mathrm{O}_{2} \rightarrow 2, \mathrm{O}_{3} \rightarrow 1.5, \mathrm{O}_{2}{ }^{2-} \rightarrow 1$
05. (4) $\mathrm{O}_{2}^{+} \rightarrow(2 \times 8)-1=15 \mathrm{e}^{-}\left(\right.$odd $\left.\mathrm{e}^{-}\right) \rightarrow$ Paramagnetic
06. (1) $\mathrm{BF}_{3} \rightarrow \mathrm{Z}=$ no. of σ-bonds $+l$. .p.

$$
=3+0 \rightarrow 3 \rightarrow \mathrm{sp}^{2}
$$

7. (4) $\mathrm{NO}_{2}^{+} \rightarrow \mathrm{O}=\mathrm{N}^{+}=\mathrm{O}$ (Hybridisation $\rightarrow \mathrm{sp}$) (Geometry \rightarrow linear)
8. (1)

In octahedral geometry three 180° angles are seen.
09. (1) If l.p arranged on axial position $\rightarrow 6$ l.p B.P repulsion.
If l.p arranged on equitorial position $\rightarrow 4$ l.p-B.p repulsion.
10. (3)

(Bent T-shape) due to l.p-B.p repulsion.
11. (3) Orbitals along different axis can not overlap.
$P_{x}-P_{x} \rightarrow \checkmark$
$\mathrm{P}_{\mathrm{y}}-\mathrm{P}_{\mathrm{y}} \rightarrow \checkmark$
$\mathrm{P}_{\mathrm{z}}-\mathrm{P}_{\mathrm{z}} \rightarrow \checkmark$
$\mathrm{P}_{\mathrm{x}}-\mathrm{P}_{\mathrm{y}} \rightarrow \times$
12. (3) 1 Debye $=3.33 \times 10^{-3}$ columb metre.
13. (4)

14. (4) H-bonding is possible with more electronegative atoms like $\mathrm{F}, \mathrm{O}, \mathrm{N}$
15. (2)

16. (3) $\mathrm{BF}_{3} \rightarrow$ Hybridisation (z) $=3+0 \Rightarrow 3 \Rightarrow \mathrm{sp}^{2}$

Geometry \Rightarrow Trigonal planar

17. (2) $\mathrm{NF}_{3} \Rightarrow \mathrm{Z}=3+1 \Rightarrow 4 \Rightarrow \mathrm{sp}^{3}$ $\mathrm{H}_{2} \mathrm{O} \Rightarrow \mathrm{Z}=2+2 \Rightarrow 4 \Rightarrow \mathrm{sp}^{3}$ ($\mathrm{Z}=$ no. of σ bonds $+l$.p)
18. (4) $\mathrm{NO}_{2}^{+} \Rightarrow \mathrm{sp} \Rightarrow$ Bond Angle $\Rightarrow 180^{\circ}$
$\mathrm{NO}_{2}^{-} \Rightarrow \mathrm{sp}^{2} \Rightarrow$ Bond angle $\Rightarrow 115^{\circ}$
(but due to lone pair bond angle is least)
$\mathrm{NO}_{2} \Rightarrow$ odd e^{-}species \Rightarrow bond angle $\Rightarrow 134^{\circ}$
19.

20. (1) $\mathrm{N}_{2}^{+} \Rightarrow$ B.O. $=$ Total no. of $\mathrm{e}^{-}-(+\mathrm{ve}$ charge $)$

$$
=14-1=13 \mathrm{e}^{-} \Rightarrow \text { B.O } \Rightarrow 2.5
$$

$\mathrm{N}_{2}{ }^{-} \Rightarrow$ B.O. $=14+1 \Rightarrow 15 \mathrm{e}^{-} \Rightarrow 2.5$
21. (1) $\mathrm{O}_{2} \Rightarrow 16 \mathrm{e}^{-} \Rightarrow$ Even no. of e^{-}, still O_{2} is paramagnetic according to MOT.
$\mathrm{O}_{2} \Rightarrow 16 \mathrm{e} \Rightarrow \sigma 1 \mathrm{~s}^{2} \sigma^{*} 1 \mathrm{~s}^{2} \sigma 2 \mathrm{~s}^{2} \sigma^{*} 2 \mathrm{~s}^{2} \sigma 2 \mathrm{p}_{\mathrm{z}}{ }^{2}$ $\pi 2 P_{X}^{2}=\pi 2 P_{y}^{2}, \pi^{*} 2 P_{x}^{1}=\pi^{*} 2 P_{y}^{1}$
(Unpaired $\mathrm{e}^{-} \Rightarrow$ Paramagnetic)
22. (3) $\mathrm{NO} \Rightarrow 7+8 \Rightarrow 15 \mathrm{e}^{-} \Rightarrow \mathrm{B} . \mathrm{O} \Rightarrow 2.5$

Odd $\mathrm{e}^{-} \Rightarrow$ Paramangetic
$\mathrm{NO}^{+} \Rightarrow 7+8-1 \Rightarrow 14 \mathrm{e}^{-} \Rightarrow \mathrm{B} . \mathrm{O} \Rightarrow 3$
even $\mathrm{e}-\Rightarrow$ Dimagnetic
23. (4) $\mathrm{NO}^{+} \Rightarrow 7+8-1=14 \mathrm{e}-\Rightarrow$ B.O. $\Rightarrow 3$
24. (4)

25. (4) $\mathrm{O}_{2}^{-} \Rightarrow 16+1 \Rightarrow 17 \mathrm{e}^{-} \Rightarrow$ odd $\mathrm{e}^{-} \Rightarrow$ paramagnetic
26. (1)
Bond length $\propto \frac{1}{\text { B.O }}$
$\mathrm{O}_{2}^{+} \Rightarrow 16-1 \Rightarrow 15 \mathrm{e}^{-} \Rightarrow \mathrm{B} . \mathrm{O} \Rightarrow 2.5$
$\mathrm{O}_{2}^{-} \Rightarrow 16+1 \Rightarrow 17 \mathrm{e}^{-} \Rightarrow$ B.O. $\Rightarrow 1.5$
$\mathrm{O}_{2}{ }^{2-} \Rightarrow 16+2 \Rightarrow 18 \mathrm{e}^{-} \Rightarrow$ B.O. $\Rightarrow 1$
$\mathrm{O}_{2} \Rightarrow 16 \mathrm{e}^{-} \Rightarrow$ B.O. $\Rightarrow 2$
27. (2) Refer Ans. no. 26
28. (1) $\mathrm{O}_{2}{ }^{2-} \Rightarrow 16+2 \Rightarrow 18 \mathrm{e}^{-} \Rightarrow$ B.O. $\Rightarrow 1$

$$
\mathrm{B}_{2} \Rightarrow 10 \mathrm{e}^{-} \Rightarrow \text { B.O. } \Rightarrow 1
$$

29. (3) $\mathrm{CO} \Rightarrow 6+8 \Rightarrow 14 \mathrm{e}^{-} \Rightarrow$ (even e^{-}species)
\Rightarrow Dimagnetic.
30. (3) $\mathrm{CO} \Rightarrow 6+8 \Rightarrow 14 \mathrm{e}^{-} \Rightarrow$ B.O. $\Rightarrow 3$

For $\mathrm{CO}_{3}{ }^{2-} \Rightarrow$ B.O. $=1.33$
For $\mathrm{CO}_{2} \Rightarrow$ B.O. $=2$
Bond length $\propto \frac{1}{\text { B.O }}$
31. (2) $\mathrm{Be}_{2} \Rightarrow \sigma 1 \mathrm{~s}^{2} \sigma^{*} 1 \mathrm{~s}^{2}$
B. $\mathrm{O}=\frac{2-2}{2}=0($ Molecule cannot exist if B.O. $=0)$
32. (1) $\mathrm{N}_{2} \Rightarrow 14 \mathrm{e}^{-} \Rightarrow$ B.O. $\Rightarrow 3$ $\mathrm{N}_{2}{ }^{+} \Rightarrow 14-1 \Rightarrow 13 \mathrm{e}^{-} \Rightarrow$ B.O. $\Rightarrow 2.5$

Bond energy \propto B.O.

33. (2) $\mathrm{N}_{2} \Rightarrow \cdot \ddot{\mathrm{~N}}=\ddot{\mathrm{O}}$ (Octet is incomplete)
34. (4) There is no equilibrium between canonical form's.
35. (4) As per MOT, antibonding molecular orbitals have more energy.
36. (1) $\mathrm{sp}^{2} \Rightarrow$ Trigonal planar
$\mathrm{sp} \Rightarrow$ linear geometry
$\mathrm{sp}^{3} \Rightarrow$ Tetrahedral geometry
37. (2) $\mathrm{SF}_{4} \Rightarrow \mathrm{Z}=\sigma$-bonds $+l . \mathrm{p}=4+1 \Rightarrow 5 \Rightarrow \mathrm{sp}^{3} \mathrm{~d}$
$\mathrm{IF}_{5} \Rightarrow \mathrm{Z}=5+1 \Rightarrow 6 \Rightarrow \mathrm{sp}^{3} \mathrm{~d}^{2}$
$\mathrm{NO}_{2}{ }^{+} \Rightarrow \mathrm{Z}=2+0 \Rightarrow \mathrm{sp}$
$\mathrm{NH}_{4}^{+} \Rightarrow \mathrm{Z}=4+0 \Rightarrow \mathrm{sp}^{3}$
38. (1) $\mathrm{BH}_{3} \Rightarrow 3 \mathrm{~B} . \mathrm{P} \Rightarrow \sigma \mathrm{e}^{-}$(Incomplete octet)
39. (2) $\underset{\left(4 e^{-}\right)}{\mathrm{He}_{2}} \Rightarrow \sigma 1 \mathrm{~s}^{2} \sigma^{*} 1 \mathrm{~s}^{2} \Rightarrow$ B.O. $=\frac{2-2}{2}=0$
$\underset{\left(6 e^{-}\right)}{\mathrm{Li}_{2}} \Rightarrow \sigma 1 \mathrm{~s}^{2} \sigma^{*} 1 \mathrm{~s}^{2} \sigma 2 \mathrm{~s}^{2} \Rightarrow$ B.O $=\frac{4-2}{2}=1$

$$
\begin{array}{r}
\underset{\left(12 e^{-}\right)}{\mathrm{C}_{2}} \Rightarrow \sigma 1 \mathrm{~s}^{2} \sigma^{*} 1 \mathrm{~s}^{2} \sigma 2 \mathrm{~s}^{2} \sigma * 2 \mathrm{~s}^{2} \pi 2 P_{x}^{2}=\pi 2 P_{y}^{2} \\
\text { B.O } \Rightarrow \frac{8-4}{2}=\frac{4}{2}=2
\end{array}
$$

$$
\begin{array}{r}
\underset{\left(15 e^{-}\right)}{\mathrm{O}_{2}^{+}} \Rightarrow \sigma 1 \mathrm{~s}^{2} \sigma^{*} 1 \mathrm{~s}^{2} \sigma 2 \mathrm{~s}^{2} \quad \sigma * 2 \mathrm{~s}^{2} \sigma 2 \mathrm{Pz}^{2} \\
\pi 2 P_{x}^{2}=\pi 2 P_{y}^{2} \pi * 2 P_{x}^{1}=\pi * 2 P_{y} \\
\text { B.O. }=\frac{10-5}{2}=\frac{5}{2}=25
\end{array}
$$

40. (3) $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{HCN}$ and acetic acid contains intermolecualr H -bonding, in cellulose .

Intramolecular H -bonding is prsenent.
41. (4) Dipole-dipole interaction is present in methanol molecules.
42. (4)

43. (3)

$\mathrm{Z}=3+0 \Rightarrow 3 \Rightarrow \mathrm{sp}^{2}$
Geometry \Rightarrow Trigonal planar \quad B.angle $\Rightarrow 120^{\circ}$
44. (3)

45. (1) $\mathrm{He}_{2} \Rightarrow 4 \mathrm{e}^{-} \Rightarrow \sigma 1 \mathrm{~s}^{2} \sigma^{*} 1 \mathrm{~s}^{2}$

$$
\Rightarrow \mathrm{B} \cdot \mathrm{O}=\frac{2-2}{2}=0
$$

46. (2)
Lattice enthalpy $\propto \frac{\text { Charge }}{\text { Size }}$
47. (2) $\mathrm{In}_{\mathrm{BF}}^{3}$, B-F bonds are polar but molecule is non-polar.
48. (4) CCl_{4} is non-polar and for $\mu_{\text {net }} \neq 0$

$$
\Rightarrow \text { Polar molecule. }
$$

49. (1) $\operatorname{In} \mathrm{NH}_{3} \Rightarrow \mathrm{Z}=3+1 \Rightarrow \mathrm{sp}^{3} \Rightarrow l$ l.p-B.p repulsion decreases bond angle.
50. (1) Refer ans. 49.

THERMODYNAMICS (SOLUTION)

1. (2) Definition of thermodynamics.
2. (4) Rate of reaction related to kinetics of reaction.
3. (2) In insulated vessel there is no exchange of heat and matter by system.
4. (3) Heat is a path function.
5. (1) Energy is a path function.
6. (3) For isolated system $\Delta \mathrm{U}=0$, hence energy remains constant.
7. (2) For adiabatic process $\mathrm{q}=0$

$$
\therefore \Delta \mathrm{U}=q+w \quad \Rightarrow \Delta \mathrm{U}=q
$$

8. (4) Characteristics of reversible process.
9. (3) For isothermal process,

$$
\Delta \mathrm{U}=0 \quad \therefore \quad \mathrm{q}=-\mathrm{w}
$$

For reversible process
wmax $=-2.303 n R T \log \frac{\mathrm{~V}_{\mathrm{f}}}{\mathrm{V}_{\mathrm{i}}}$
$\therefore q=2.303 \mathrm{nRT} \log \frac{\mathrm{V}_{\mathrm{f}}}{\mathrm{V}_{\mathrm{i}}}$

Since 1999

10. (1) Work during free expansion of a gas is zero. The expansion of gas in vaccum $\left(\mathrm{P}_{\mathrm{ex}}=0\right)$ is called free expansion.
11. (4) At constant volume, $\quad \mathrm{P} \Delta \mathrm{V}=0 \quad \because \Delta \mathrm{~V}=0$
$\therefore \quad \Delta \mathrm{U}=q+w=\mathrm{q}-\mathrm{P} \Delta \mathrm{V}$
CAREER INST
$\therefore \quad \Delta \mathrm{U}=50 \mathrm{~kJ}$
12. (3) Vapourisation of water at $100^{\circ} \mathrm{C}$ and 1 bar
$\mathrm{H}_{2} \mathrm{O}(l) \longrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad \Delta \mathrm{H}_{\text {vap }}=41 \mathrm{~kJ} \mathrm{~mol}^{-1}$
$\therefore \Delta \mathrm{H}=\Delta \mathrm{U}+\mathrm{RT} \Delta \mathrm{n} \quad \therefore \quad \Delta \mathrm{U}=\Delta \mathrm{H}-\mathrm{RT}$
$\Rightarrow 41 \mathrm{~kJ}-(8.314 \times 373) \mathrm{J}$
$\Rightarrow 41 \mathrm{~kJ}-3 \mathrm{~kJ}$ (app.) $\quad \Rightarrow \Delta \mathrm{U}=38 \mathrm{~kJ}$
13. (2) Molar heat capacity is constant for 1 mole of a given system and does not depends upon amount of matter but depends upon condition of temp. pressure and volume.
14. (4) $q=c \times \Delta T \times m$

Where, $\mathrm{q}=$ heat, $\mathrm{c}=$ heat capacity $/$ specific heat
$\Delta \mathrm{T}=$ change in temperature
$\mathrm{m}=$ mass
15. (3) Find out the correct equation (correct instead of incorrect)
$\Delta \mathrm{H}=\Delta \mathrm{U}+\Delta n R T \quad \therefore \quad \Delta \mathrm{U}=\Delta \mathrm{H}-\Delta n \mathrm{RT}$
16. (4) Condition of standard enthalpy of reaction,
$\mathrm{T}=298 \mathrm{~K}$ and $\mathrm{P}=1 \mathrm{bar}$
17. (3) $\Delta H_{\text {fus }}=6.00 \mathrm{kj} \mathrm{mol}^{-1}$
$\therefore \quad n_{H_{2} \mathrm{O}}=\frac{90}{18}=5$
$\therefore \Delta \mathrm{H}_{\text {fus }}$ for $90 \mathrm{gm}(5 \mathrm{moles})$ of water is
$\Delta \mathrm{H}=6.00 \mathrm{~kJ} \times 5=30 \mathrm{~kJ}$
18. $(1) \mathrm{H}_{2} \mathrm{O}_{(\mathrm{s})} \longrightarrow \mathrm{H}_{2} \mathrm{O}(l) \quad \Delta n=0$

1 mole $\quad 1$ mole
(No gas involved $\therefore \Delta n=0$)
$\therefore \Delta \mathrm{H}=\Delta \mathrm{U}+\Delta n \mathrm{RT} \Rightarrow \Delta \mathrm{H}=\Delta \mathrm{U}+0$
$\Delta \mathrm{H}=\Delta \mathrm{U}$ but $\Delta \mathrm{H}=6000 \mathrm{~J}=6 \mathrm{~kJ}$
$\therefore \quad \Delta \mathrm{U}=6 \mathrm{~kJ}$
19. (1) The enthalpy change of a reaction where 1 mole of a molecule is formed from its constituent elements (atoms) at standard condition is called standard enthalpy of formation.
20. (4) According to Hess's law

$$
\Delta H_{1}=\Delta H_{2}+\Delta H_{3}+\Delta H_{4}
$$

21. (2) a) $\mathrm{C}_{6} \mathrm{H}_{6}+\frac{15}{2} \mathrm{O}_{2} \rightarrow 6 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$

$$
\Delta \mathrm{H}_{1}=-3267 \mathrm{~kJ}
$$

b) $\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}$ $\Delta \mathrm{H}_{2}=-393.5 \mathrm{~kJ}$
c) $\mathrm{H}_{2}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$ $\Delta \mathrm{H}_{3}=-285.83 \mathrm{~kJ}$
d) $6 \mathrm{C}+3 \mathrm{H}_{2} \rightarrow \mathrm{C}_{6} \mathrm{H}_{6} \quad \Delta \mathrm{H}=$?

By using Hess law

$$
\begin{aligned}
& 6 \mathrm{C}+6 \mathrm{O}_{2} \longrightarrow 6 \mathrm{CO}_{2} \\
& 3 \mathrm{H}_{2}+\frac{3}{2} \mathrm{O}_{2} \longrightarrow 3 \mathrm{H}_{2} \mathrm{O} \\
& \begin{aligned}
\mathrm{C}_{6} \mathrm{H}_{6}-\frac{15}{2} \mathrm{O}_{2} & \longrightarrow 6 \mathrm{CO}_{2}-3 \mathrm{H}_{2} \mathrm{O}
\end{aligned} \\
& \hline 6 \mathrm{C}+3 \mathrm{H}_{2} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{6}
\end{aligned} \begin{aligned}
\therefore \Delta \mathrm{H}= & \left(6 \times \Delta \mathrm{H}_{2}\right)+\left(3 \times \Delta \mathrm{H}_{3}\right)-\left(\Delta \mathrm{H}_{1}\right) \\
& =(6 \times-393.5)+(3 \times-285.83-(-3267) \\
& =-2361-857.49+3267=+48.51 \mathrm{~kJ}
\end{aligned}
$$

22. (3) Definition of spontaneous process.
23. (2) Entropy change is very high when system converts into gaseous phase from solid phase in a process.
24. (4) According to 2nd law of thermodynamics, the entropy increases in a spontaneous process.
i.e. $\Delta \mathrm{S}_{\mathrm{T}}=\Delta \mathrm{S}_{\mathrm{sys}}+\Delta \mathrm{S}_{\text {sur }}>0(+\mathrm{ve})$
25. (1) For reversible process, entropy change in system is $\Delta \mathrm{S}=\frac{\mathrm{q}}{\mathrm{T}}$.
26. (3) For endothermic spontaneous process,

$$
\Delta \mathrm{H}<\mathrm{T} \Delta \mathrm{~S}
$$

$\therefore \Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$ If $\Delta \mathrm{H}<\mathrm{T} \Delta \mathrm{S}$ then $\Delta \mathrm{G}=-\mathrm{ve}$
27. (2) Spontaneous process with no. cross over temperature in exothermic process with positive entropy change in system i.e.
$\Delta \mathrm{H}=-\mathrm{ve}$ and $\Delta \mathrm{H}=+\mathrm{ve}$
28. (3) We have, $\Delta \mathrm{G}=\Delta \mathrm{H}-\mathrm{T} \Delta \mathrm{S}$
at eqm. $\Delta \mathrm{G}=0$ (Cross over temp. means eqm temp.)
$\therefore \mathrm{T} \Delta \mathrm{S}=\Delta \mathrm{H} \quad \therefore \mathrm{T}=\frac{\Delta \mathrm{H}}{\Delta \mathrm{S}}$
29. (4) 3rd law of thermodynamics state that system has zero entropy at absolute zero temperature.
30. (2) We have, $\Delta \mathrm{G}=\Delta \mathrm{G}^{0}+2.303 \mathrm{RT} \log \mathrm{K}$
at eqm $\quad \Delta \mathrm{G}=0 \therefore \Delta \mathrm{G}^{0}=-2.303 \mathrm{RT} \log \mathrm{K}$
31. (4) All are the condition of a endothermic reaction to be spontaneous.
32. (3) Atomisation of methane,

$(4 \mathrm{C}-\mathrm{H}) \quad \Delta \mathrm{H}=1665 \mathrm{~kJ}$
$\therefore \quad 4 \times \Delta_{\mathrm{b}} \mathrm{H}_{\mathrm{CH}}=1665 \mathrm{~kJ}$
$\therefore \quad \Delta_{\mathrm{b}} \mathrm{H}_{\mathrm{CH}}=\frac{1665}{4}=416 \mathrm{~kJ}$
33. (3) Heat constant pressure (isobaric process)

$$
\mathrm{q}_{\mathrm{p}}=\Delta \mathrm{U}+\mathrm{P} \Delta \mathrm{~V}
$$

34. (1) For given reaction, $\Delta n=0 \quad \therefore \Delta \mathrm{H}=\Delta \mathrm{U}$
35. (1) $\Delta n=n_{2}-n_{1}=0-1=-1$
36. (4) Entropy is the measure of randomness in system.
37. (3) According to law of thermodynamics.
1) Isothermal process $=q=-\mathrm{w}$
2) Adiabatic process $=\Delta \mathrm{U}=\mathrm{w}$
3) Isochoric process $=\Delta U=q$
4) Isobaric process $=q=\Delta U+P \Delta V$
38. (4) Free expansion $\Rightarrow P_{e x}=0 \Rightarrow w=0$

Reversible process $\Rightarrow \mathrm{W}_{\text {max }}=$ maximum work
For compression $\Rightarrow \Delta \mathrm{V}=-\mathrm{ve} \therefore \mathrm{W}=-\mathrm{P} \Delta \mathrm{V}(+\mathrm{ve})$
39. (2) At eqm the temperature, $\mathrm{T}=\frac{\Delta \mathrm{H}}{\Delta \mathrm{S}}$
40. (3) As the product is form from its constituent elements/atoms.
41. (1) Spontaneous process may exothermic or endothermic depending upon the value of " $\Delta \mathrm{S}$ " and "T".
42. (2) For isolated system $\Delta U=0$

For isothermal process $\Delta \mathrm{T}=0$
For spontaneous process $\Delta \mathrm{G}=-\mathrm{ve}$
43. (1) Statement is of 2nd law of thermodynamics.
44. (1) For free expansion: $\mathrm{P}_{\mathrm{ex}}=0$

$$
\therefore \text { work }=-\mathrm{P}_{\mathrm{ex}} \Delta \mathrm{~V}=0
$$

45. (2) During melting of ice, entropy increases hence it is spontaneous.).
46. (1) Combustion of hydrogen gives water,
$\mathrm{H}_{2}+1 / 2 \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$.
47. (3) For Habers process

$$
\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3} \quad \Delta n=-2
$$

and $\Delta H=\Delta U-2 R T$
$\therefore \Delta \mathrm{U}>\Delta \mathrm{H}$
48. (4) i) Temperature is increases
ii) C_{V} is molar heat capacity.
49. (1) Intensive property is the ratio of two extensive properties.
50. (2) For spontaneous process,

$$
\Delta \mathrm{S}_{\mathrm{T}}>0 \quad(+v e) \quad \Rightarrow \Delta \mathrm{G}<0 \quad(-\mathrm{ve})
$$

EQUILIBRIUM (SOLUTION)

1. (3) Liquid $\underset{\text { Condensation }}{\stackrel{\text { Evaporation }}{\rightleftharpoons}} \mathrm{Gas}$
at equilibrium rate of evaporation $=$ rate of condensation
2. (3) Melting point or freezing point of a substance is the temperature at which the liquid phase and solid phase coexist.
3. (2) Higher the volability leaser will be in the intermolecular forces and hence leaser will be the boiling point.
\therefore Water will have greater boiling point than methyl alcohol
4. (1) Equilibrium can only be obtained when carried out in closed container.
5. (3) Solubility of CO_{2} in water is exothermic change hence increasing temperature will decrease solubility.
6. (1) $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightleftharpoons 2 \mathrm{NH}_{3}$
$\left[\mathrm{NH}_{3}\right]$ will increase with respect to time as it is a product while that of $\left[\mathrm{N}_{2}\right]$ and $\left[\mathrm{H}_{2}\right]$ will decrease with respect to time
Assuming the reactants were taken in the ratio of their stoichiometric w-efficient the $\mathrm{n}_{\mathrm{N}_{2}}<\mathrm{n}_{\mathrm{H}_{2}}$ as $\mathrm{n}_{\mathrm{N}_{2}}: \mathrm{n}_{\mathrm{H}_{2}}$ $=1: 3$ so initially $\left[\mathrm{H}_{2}\right]>\left[\mathrm{N}_{2}\right]$
7. (2) $4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

999

$\mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{NO}]^{4}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}}{\left[\mathrm{NH}_{3}\right]^{4}\left[\mathrm{O}_{2}\right]^{5}}=[\mathrm{NO}]^{4}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}\left[\mathrm{NH}_{3}\right]^{-4}\left[\mathrm{O}_{2}\right]^{-5}$.
Given $\mathrm{K}_{\mathrm{c}}=[\mathrm{NO}]^{\mathrm{a}}\left[\mathrm{H}_{2} \mathrm{O}\right] \mathrm{b}\left[\mathrm{NH}_{3}\right]^{\mathrm{c}}\left[\mathrm{O}_{2}\right]^{\mathrm{d}} \rightarrow \ldots$ (2)
comparing (1) and (2)
$\mathrm{a}=4 \quad \mathrm{~b}=6 \quad \mathrm{c}=-4 \quad \mathrm{~d}=-5$
08. (3) An equilibrium reaction is homogenous when all the reactants and products are in same phase.
09. (4) When a factor is multiplied to an equilibrium then new equilibrium constant $=($ old equilibrium constant $)$ multiplied factor
Given multiplication factor $=\frac{1}{3}$
$\Rightarrow \mathrm{K}_{\mathrm{c}}^{1}=\left(\mathrm{K}_{\mathrm{c}}\right)^{\frac{1}{3}}=\sqrt[3]{\mathrm{K}_{\mathrm{c}}}$
New $K_{c}=\sqrt[3]{\left(\text { old K }_{c}\right)}$
10. (1) $\mathrm{K}_{\mathrm{p}}=\mathrm{K}_{\mathrm{c}}(\mathrm{RT})^{\Delta n g}$

For $K_{p} K_{c}$
$\Delta \mathrm{ng}>\mathrm{O}$
$c+d>a+b$
11. (4) [pure solid] or [pure liquids] almost remains constant and hence are replaced by 1 (unity) while writing K_{c} for a heterogenous equilibrium
12. (4) $\mathrm{Ag}_{2} \mathrm{O}(\mathrm{s})+2 \mathrm{HNO}_{3}(\mathrm{aq}) \rightleftharpoons 2 \mathrm{AgNO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(l)$
$\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{AgNO}_{3}\right]^{2}}{\left[\mathrm{HNO}_{3}\right]^{2}}$
Changing the $\left[\mathrm{AgNO}_{3}\right]$ or $\left[\mathrm{HNO}_{3}\right]$ will not have any change in value of K_{c} as it depends only on temperature.
13. (2) $\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{C}(\mathrm{s}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g})$

$\mathrm{t}=\mathrm{Os}$	0.33 bar	-	O
$\mathrm{t}=$ teg	$0.33-\mathrm{x}$		2 x
Given	$\mathrm{Kp}=3$		

Given $K p=3$
$\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{P}_{\mathrm{CO}}^{2}}{\Rightarrow} \frac{(2 \mathrm{x})^{2}}{0.33-\mathrm{x}}=3$
$\Rightarrow \frac{4 \mathrm{x}^{2}}{\frac{1}{3}-\mathrm{x}}=3 \Rightarrow \frac{4 \mathrm{x}^{2} \times 3}{1-3 \mathrm{x}}=3$
$\Rightarrow 4 \mathrm{x} 2=1-3 \mathrm{x}$
$\Rightarrow 4 \times 2+3 \mathrm{x}-1=0 \quad \Rightarrow \mathrm{x}=\frac{1}{4},-1$
x canot be -1
$\therefore \mathrm{x}=\frac{1}{4} \Rightarrow \mathrm{P}_{\mathrm{CO}}=2 \mathrm{x}=\frac{1}{2}$ bar
14. (2) Q_{c} and K_{c} have same expresion hence both will have same units.
15. (3) $\Delta \mathrm{G}^{0}=-2.303 \mathrm{RT} \log \mathrm{K}_{\mathrm{c}}$
for reaction to be spontaneous $\Delta \mathrm{G}^{\mathrm{o}}<0$
$\Rightarrow \log \mathrm{K}_{\mathrm{c}}>0$
$\therefore \log \mathrm{K}_{\mathrm{c}}>1$
16. (3) Value of equilibrium constant K_{c} only depends upon temperature, hence by adding product value of K_{c} will not change.
17. (4) $\mathrm{H}_{2}+\mathrm{I}_{2} \rightleftharpoons 2 \mathrm{HI}$
$\mathrm{Q}_{\mathrm{c}}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}$
$\mathrm{K}_{\mathrm{c}}=\mathrm{Q}_{\mathrm{c}}$ at equilibrium
by adding same moles of H_{2} of equilibrium will decrease the value of Q_{c} while K_{c} still remains the same as it's value only depends on temperature.
18. (3) As per the given graph there is a sudden jump in $\left[\mathrm{H}_{2}\right]$ at equilibrium and there after equilibrium is restablished. From this we may conduct the diagram represents addition of H_{2} at equilibrium
19. (4) Pressure donot have any effect on solid or aqueous phase homogenous equilibrium and also for gaseous phase reaction where total no. of moles on both reactant and product are equal
20. (1) On increasing the pressure of a reaction at equilibrium the reaction proceeds in a direction of decreasing no. of gaseous moles.
(1) $\mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
increasing P will shift the reaction in forwards direction
(2) $\mathrm{C}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{CO}(\mathrm{g})$
increasing P will shift the reaction in backward direction.
21. (3) Addition of inert gas at constant volume donot have any effect on equilibrium i.e this change will not bring any shift because keeping the volume constant the partial pressure or molar concentration donot change.
Therefore statement- 1 is incorrect and statemen- 2 is correct.
22. (2) Correction in question
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g}) \Delta \mathrm{H}=-\mathrm{xkJ}$
$\log \frac{\mathrm{K}_{2}}{\mathrm{~K}_{1}}=\frac{\Delta \mathrm{H}}{2.303 \mathrm{R}}\left\{\frac{1}{\mathrm{~T}_{1}}-\frac{1}{\mathrm{~T}_{2}}\right\}$
Since the reaction is exothermic hence increasing the temperature will decrease the equilibrium constant and decreasing the temperature will increase the equilibrium constant.
no. of gaseous moles of product $=2$ moles
no. of gaseous moles of reactant $=4$ moles
$\therefore \Delta \mathrm{ng}=2-4=-2$
\therefore Increasing the pressure will shift the reaction in forward direction and will result in higher yield.
23. (1) Melting of ice
$\mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightleftharpoons \mathrm{H}_{2} \mathrm{O}(l) \quad \Delta \mathrm{H}_{\mathrm{r}}=+\mathrm{ve}$
Ice have hexagonal arrangement of H 2 O molecules with void spaces hence increasing the pressure will cause the H-bonding to break there by breaking the hexagonal cage like structure and thus resulting in formation of water
As melting is an endothermic process hence increasing the temperature will also cause melting of ice.
\therefore melting of ice is favoured by high pressure and high temperature.
24. (1) The value of K_{p} or K_{c} just given us an idea of extent of reaction rather than the rate reaction.
25. (4) Equilibrium established involving a weak electrolyte is known as ionic equilibrium where the equilibrium involves ions in aqueous medium
$\mathrm{AB}(\mathrm{aq}) \rightleftharpoons \mathrm{A}_{(\mathrm{aq})}^{+}+\mathrm{B}_{(\mathrm{aq})}^{+}$
wea electrolyte
26. (2) P. increasing temperature for exothermic reaction will shift the reactin in backward direction
$\mathrm{P} \rightarrow$ (ii)
Q. Increasing temperature for endothermic reaction will shift the reaction in forward direction
$\mathrm{Q} \rightarrow$ (i)
R. Haber's process
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$
Increasing the pressure will cause a forward shift
$\mathrm{R} \rightarrow$ (i)
S. Contact process
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$
Increasing the pressure will cause of forward shift.
$\mathrm{S} \rightarrow$ (i)
27. (3) A proton acceptor is a base while a proton donor is an acid according Bronsted-Lowry theory
$\mathrm{HCl}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}$
here $\mathrm{H}_{2} \mathrm{O}$ is behaving as Bronsted base while in the reaction
$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$
$\mathrm{H}_{2} \mathrm{O}$ is donating $\mathrm{H}^{+} \quad \therefore$ it is behaving as bronsted aci.
From the above two reaction we can conclude that $\mathrm{H}_{2} \mathrm{O}$
can accept as well donate H^{+}ion.
28. (3) $\mathrm{HCO}_{3}{ }^{-} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}$

HF acid $\rightarrow \mathrm{F}^{-}$conjugae base
$\mathrm{HSO}_{4}{ }^{-}$acid $\rightarrow \mathrm{SO}_{4}{ }^{2-}$ conjugae base
NH_{2}^{-}Base $\rightarrow \mathrm{NH}_{3}$ conjugate acid
29. (1) Stronger acids have weaker conjugate base as HClO_{4} and HI are stronger acids thatn $\mathrm{H}_{3} \mathrm{O}^{+}$hence ClO_{4}^{-}and I^{-}would be weaker base compared to $\mathrm{H}_{2} \mathrm{O}$.
30. (2) Question correction

Statement-2 : In dissociation of weak acid presence of common ion H^{+}will cause backward shift in the equilibrium reaction.
Statement-I : When concentration of a strong acid is less than $10^{-6} \mathrm{M}$
$10^{-7}, 10^{-8}, 10^{-9} \ldots . .$. than $\left[\mathrm{H}^{+}\right]_{\text {mix }}=\left[\mathrm{H}^{+}\right]_{\text {strong acid }}+\left[\mathrm{H}^{+}\right]$ $\mathrm{H}_{2} \mathrm{O}$ is considered.
\therefore For $10^{-8} \mathrm{HCl}$ solution
$[\mathrm{H}+]$ solution $=\left[\mathrm{H}^{+}\right]_{\mathrm{HCl}}+\left[\mathrm{H}^{+}\right]_{\mathrm{H}_{2} \mathrm{O}}=10^{-8}+10^{-7}$
$=11 \times 10^{-8} \mathrm{M}$
$\therefore \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]_{\text {solution }}=-\log 11 \times 10^{-8}=6.958$
Statement-II :
$\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq}) \rightleftharpoons \mathrm{CH}_{3} \mathrm{COO}^{-}(\mathrm{aq})+\mathrm{H}^{+}(\mathrm{aq})$
weak acid
Adding of H^{+}or $\mathrm{CH}_{3} \mathrm{COO}^{-}$in the above reaction will cause a shift in the equilibrium reaction in backward direction.
31. (4) P. Ionic product of water
$\mathrm{K}_{\mathrm{w}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]=10^{-14}$
$\mathrm{P} \rightarrow$ (ii)
Q. $\mathrm{H}_{2} \mathrm{O}(\mathrm{aq}) \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})$
$\mathrm{K}_{\mathrm{c}}=$ dissociation constant $=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right]}=\frac{10^{-7} \times 10^{-7}}{1000 / 18}$
$=\frac{10^{-14}}{55.55}$
$\mathrm{Q} \rightarrow$ (iii)
R. Molar concentration of $\mathrm{H}_{2} \mathrm{O}=\frac{1000}{18}=55.55 \mathrm{M}$
$\mathrm{R} \rightarrow$ (iv)
S. at $\mathrm{t}=\underset{\mathrm{s}}{\mathrm{H}_{2} \mathrm{O}(\mathrm{aq})} \rightleftharpoons \mathrm{H}^{+}(\mathrm{aq})+\mathrm{OH}_{0}^{-}(\mathrm{aq})$
at $\mathrm{t}=$ teq $\quad \mathrm{C}-\mathrm{c} \alpha \quad \mathrm{c} \alpha \quad \mathrm{c} \alpha$
$\left[\mathrm{H}^{+}\right]=\mathrm{c} \alpha=10^{-7}$
$\Rightarrow \alpha=\frac{10^{-7}}{C}=\frac{10^{-7}}{55.55}$
Where $\mathrm{C}=$ molar concentration of water
$\mathrm{S} \rightarrow$ (v)
T. $\mathrm{pk}_{\mathrm{w}}=-\log \mathrm{k}_{\mathrm{w}}=-\log 10^{-14}$
$\mathrm{pkw}=14$
$\mathrm{T} \rightarrow$ (i)
32. (4) Monobasic acid $=\mathrm{HA}$

$$
\begin{aligned}
& \mathrm{t}=\underset{\mathrm{v}}{\mathrm{c}} \underset{\mathrm{c}}{\mathrm{HA}}(\mathrm{aq}) \rightleftharpoons \underset{0}{\mathrm{H}^{+}(\mathrm{aq})}+\mathrm{A}_{0}^{-}(\mathrm{aq}) \\
& \mathrm{t}=\text { teq } \quad \mathrm{C}-\mathrm{c} \alpha \quad \mathrm{c} \alpha \quad \mathrm{c} \alpha
\end{aligned}
$$

$\mathrm{pH}=-\log \left(\mathrm{H}^{+}\right)=-\log \mathrm{c} \alpha=-\log \sqrt{\mathrm{KaC}}$
$\Rightarrow \mathrm{pH}=-\frac{1}{2} \log \mathrm{k}_{\mathrm{a}}-\frac{1}{2} \log \mathrm{C}$
$\Rightarrow \mathrm{pH}=\frac{\mathrm{pka}}{2}-\frac{\log \mathrm{C}}{2}$
$\Rightarrow 4.5=\frac{\text { pka }}{2}-\frac{\log 0.1}{2}$
$\Rightarrow 9=\mathrm{pka}+1$
$\Rightarrow \mathrm{pka}=8$
33. (2) We know that
$\mathrm{K}_{\mathrm{a}} \times \mathrm{K}_{\mathrm{b}}=\mathrm{K}_{\mathrm{w}}=10^{-14}$
$\Rightarrow \mathrm{K}_{\mathrm{b}}=\frac{10^{-14}}{\mathrm{~K}_{\mathrm{a}}}=\frac{10^{-14}}{5.6 \times 10^{-10}}$
$=0.178 \times 10^{-4}$
$=1.78 \times 10^{-5}$
$\mathrm{pkb}=-\log \mathrm{k}_{\mathrm{b}}$
$=-\log \left(1.78 \times 10^{-5}\right)$
$=-\log 10^{-5}-\log 1.78$
$=5-\log 1.78$
$\therefore \mathrm{pk}_{\mathrm{b}}=5-\log 1.8$
34. (4) For polyprotic acids
$\mathrm{ka}_{1}>\mathrm{ka}_{2}>\mathrm{ka}_{3}>\ldots \ldots .$.
\therefore statement 1 is true
Removing a positively charged proton charged ion will be difficult
\therefore statement 2 is false
35.

$$
\mathrm{Na}^{+}(\mathrm{aq})+\mathrm{OH}^{-}(\mathrm{aq})
$$

$\therefore \mathrm{Na}^{+}(\mathrm{aq})$ ion will not get hydrolysed but will get hydrated
From the above we may conclude ion from weak electrolyte will get hydrolyzed but that from strong electrolyte will not get hydrolyzed.
$\mathrm{ClO}_{4}{ }^{-} \rightarrow$ anion from HClO_{4} a strong acid so will not get hydrolyzed and will get hydrated
$\mathrm{CH}_{3} \mathrm{COO}^{-} \rightarrow$ anion from $\mathrm{CH}_{3} \mathrm{COOH}$ a weak acid so will get hydrolyzed
$\mathrm{NO}_{3}{ }^{2} \rightarrow$ anion from HClO_{4} a strong acid so will not get hydrolyzed and will get hydrated.
36. (3) (P) NaNO_{3} salt of NaOH (strong base) +HNO 3 (strong acid)
$\therefore \mathrm{pH}=7$
$\mathrm{P} \rightarrow$ (ii)
(Q) $\mathrm{CH}_{3} \mathrm{COONa}$ salt of $\mathrm{CH}_{3} \mathrm{COOH}$ (weak acid) + NaOH (strong base)
$\Rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}$ion will undergo hydrolysis anionic hydrolysis \Rightarrow solution will be alkaline
$\therefore \mathrm{pH}>7$
$(\mathrm{Q}) \rightarrow(\mathrm{i})$
(R) $\mathrm{NH}_{4} \mathrm{Cl}$ salt of $\mathrm{NH}_{4} \mathrm{OH}$ (weak base) +HCl (strong acid)
$\Rightarrow \mathrm{NH}_{4}{ }^{+}$ion will undergo hydrolysis cationic hydrolysis \Rightarrow solution will be acidic
$\therefore \mathrm{pH}<7$
(R) \rightarrow (iii)
(S) $\mathrm{CH}_{3} \mathrm{COONH}_{4}$ salt of $\mathrm{CH}_{3} \mathrm{COOH}$ (weak acid) + $\mathrm{NH}_{4} \mathrm{OH}$ (weak base)
$\Rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}$ion and NH_{4}^{+}ion both will undergo hydrolysis
$\therefore \mathrm{pH}$ can have any value
(S) \rightarrow (iv)
37. (4) Acidic buffer can be prepared by mixing a weak acid and salt of this wea acid with strong bse.
38. (1) $\mathrm{pH}=9.25 \Rightarrow$ it's a basic buffer
for basic buffer
$p^{\mathrm{H}}=14-\mathrm{p}^{\mathrm{OH}}$
where $\mathrm{p}^{\mathrm{OH}}=\mathrm{p}^{\mathrm{kb}}+\log \frac{\text { [conjugate acid] }}{[\text { Base }]}$
\therefore conjugate acid is from salt a strong electrolyte ($\alpha=100 \%$)
\therefore dilution will not have any effect on [conjugate acid] but [base] will change
after 10 time dilution
$[\text { Base }]^{1}=\frac{[\text { Base }]}{10}$
$\Rightarrow(\mathrm{pOH})^{1}=\mathrm{p}^{\mathrm{Kb}}+\log \frac{\text { [Conjugate acid }]}{[\text { Base] } \mathrm{nce}}$
1999
$=\mathrm{pk}_{\mathrm{b}}+\log \frac{\text { [Conjugate acid] }}{[\text { Base }]}$
$\frac{\text { [Conjugate acid] }}{[\text { Base }]} \times 10$
$(\mathrm{pOH})=\mathrm{pOH}+1$
$\Rightarrow(\mathrm{pH})=14-\left(\mathrm{p}^{\mathrm{OH}}\right)^{1}=14-\left(\mathrm{p}^{\mathrm{OH}}+1\right)$
$=14-\mathrm{pOH}-1=\mathrm{pH}-1$
$=9.25-1$
$=8.25$
39. (3) For a salt to dissolve in a givn solvent (liquid)
$\Delta_{\text {Latticeenergy }}^{\mathrm{H}}<\Delta_{\text {solution }}^{\mathrm{H}}$
40. (2) $\mathrm{Zr}_{3}\left(\underset{\mathrm{~s}}{ }\left(\mathrm{PO}_{4}\right)_{4} \longrightarrow \underset{\mathrm{o}}{ } \longrightarrow \underset{\mathrm{o}^{4+}}{4+}+4 \mathrm{PO}_{4}^{3-}\right.$
$\mathrm{K}_{\text {sp }}=\left[\mathrm{Zn}^{4+}\right]^{3}\left[\mathrm{PO}_{4}^{3-}\right]^{4}$
$=(3 \mathrm{~S})_{3}(4 \mathrm{~S})^{4}$
$=27 \mathrm{~S}^{3} \times 256 \mathrm{~S}^{4}$
$=6912 \mathrm{~S}^{7}$
$\therefore \mathrm{S}=\left(\frac{\mathrm{K}_{\text {sp }}}{6912}\right)^{-\frac{1}{7}}$
41. (1) For a saturated solution of NaCl the following equilibrium will exist
$\mathrm{NaCl}(\mathrm{aq}) \rightleftharpoons \mathrm{Na}^{+}(\mathrm{aq})+\mathrm{Cl}^{-}(\mathrm{aq})$
by passing HCl gas into this solution we are availing $\mathrm{Cl}-$ a common ion which will cause NaCl to precipitate out of the solution.
42. (2) $\mathrm{Ni}(\underset{\mathrm{s}}{ } \mathrm{OH})_{2} \longrightarrow \underset{\mathrm{o}}{ } \longrightarrow \underset{\mathrm{o}}{\mathrm{Ni}^{2+}}+\underset{\mathrm{OH}^{-}}{ }$

$\left(\mathrm{K}_{\mathrm{ip}}\right) \mathrm{Ni}(\mathrm{OH})^{2}=\left[\mathrm{Ni}^{2+}\right]\left[\mathrm{OH}^{-1}\right]^{2}$
$\Rightarrow 2 \times 10^{-15}=\mathrm{S}(25+0.1)^{2}$
$\therefore \mathrm{S} \lll 1$
$\Rightarrow 25+0.1 \approx 0$
$\Rightarrow \mathrm{S}=-\frac{2 \times 10^{-15}}{(0.1)^{2}}=2 \times 10^{-3} \mathrm{M}$
43. (1) $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g})$
(1) (ng) product $=2(\mathrm{ng})_{\mathrm{R}}=1$
\therefore Decreasing pressure will shift the reaction in forward direction and increasing pressure will shift reactin backward direction.
(2) $\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{P}_{\mathrm{NO}_{2}}^{2}}{\mathrm{R}_{\mathrm{N}_{2} \mathrm{O}_{4}}} \Rightarrow$ Unit of $\mathrm{kp}=\mathrm{atm}$
(3) At $500 \mathrm{~K} \mathrm{~K}_{\mathrm{p}}=107 \times 10^{3}$
and at $600 \mathrm{~K} \mathrm{~K}_{\mathrm{p}}=107 \times 10^{4}$
\Rightarrow Increasing the temperature increases the value of k_{p} means the reaction is endothermic i.e. $\Delta \mathrm{H}_{\mathrm{r}}=+\mathrm{ve}$.
(4) $\underset{\mathrm{C}}{\mathrm{N}_{2} \mathrm{O}_{4}} \rightleftharpoons \underset{\mathrm{O}}{2 \mathrm{NO}_{2}}$
n C-C $\alpha \quad 2 \mathrm{C} \alpha \quad \mathrm{n}_{\text {total }}=\mathrm{C}+\mathrm{C} \alpha$
Pi $\frac{\mathrm{C}(1-\alpha)}{\mathrm{C}(1+\alpha)} \mathrm{P} \quad \frac{2 \mathrm{C} \alpha}{\mathrm{C}(\mathrm{H} \alpha)} \mathrm{P}$
$=\frac{1-\alpha}{1+\alpha} \mathrm{P} \quad=\frac{2 \alpha}{1+\alpha} \mathrm{P}$
where $\mathrm{P}=$ equilibrium pressure
$\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{P}_{\mathrm{NO}_{2}}^{2}}{\mathrm{P}_{\mathrm{N}_{2} \mathrm{O}_{4}}}=\frac{\left(\frac{2 \alpha}{1+\alpha} \mathrm{P}\right)^{2}}{\frac{(1-\alpha)}{(1+\alpha)} \mathrm{P}}$
$\Rightarrow \mathrm{K}_{\mathrm{p}}=\frac{4 \alpha^{2} \mathrm{P}^{2}(1+\alpha)}{(1+\alpha)^{2}(1-\alpha) \mathrm{P}}=\frac{4 \alpha^{2} \mathrm{P}}{(1+\alpha)(1-\alpha)}=\frac{4 \alpha^{2} \mathrm{P}}{1-\alpha^{2}}$
If $\mathrm{P}^{1}=2 \mathrm{P}$

$$
\alpha^{1}=? ?
$$

$\mathrm{K}_{\mathrm{p}^{\prime}}=\frac{4\left(\alpha^{1}\right)^{2} \mathrm{P}^{1}}{1-\left(\alpha^{1}\right)^{2}}=\frac{4\left(\alpha^{1}\right)^{2} 2 \mathrm{P}}{1-\left(\alpha^{1}\right)^{2}}=\frac{8\left(\alpha^{1}\right)^{2} \mathrm{P}}{1-\left(\alpha^{1}\right)^{2}}$
$\therefore \mathrm{K}_{\mathrm{p}}$ only depends upon temperature
$\Rightarrow \mathrm{K}_{\mathrm{p}}=\mathrm{Kp}^{1}$
$\Rightarrow \frac{4 \alpha^{2} \mathrm{P}}{1-\alpha^{2}}=\frac{8\left(\alpha^{1}\right)^{2} \mathrm{P}}{1-\left(\alpha^{1}\right)^{2}}$
assuming α and α^{1} to be small as compared to 1
$\Rightarrow 1-\alpha^{2} \approx 1$ and $1-\left(\alpha^{1}\right)^{2} \approx 1$
$\Rightarrow 1 \alpha^{2}=8\left(\alpha^{1}\right)^{2}$
$\Rightarrow\left(\alpha^{1}\right)^{2}=\frac{\alpha^{2}}{2} \Rightarrow \alpha^{1}=\frac{\alpha}{\sqrt{2}}$
i.e. increasing pressure by 100% cause degree of dissociation to change by a factor of $\frac{1}{\sqrt{2}}$

1999
44. (3) $\mathrm{CH}_{3} \mathrm{COONH}_{4}$ is a salt of $\mathrm{CH}_{3} \mathrm{COOH}$ (weak acid) and $\mathrm{NH}_{4} \mathrm{OH}$ (weak base)
$\Rightarrow \mathrm{pH}=\frac{\mathrm{pk}_{\mathrm{w}}}{2}+\frac{\mathrm{pk}_{\mathrm{a}}}{2}-\frac{\mathrm{pk}_{\mathrm{b}}}{2}$
Given $\left(\mathrm{K}_{\mathrm{a}}\right) \mathrm{CH}_{3} \mathrm{COOH}=1.8 \times 10^{-5}$
$\Rightarrow \mathrm{pk}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}}=-\log 1.8 \times 10^{-5}=4.74$
Given $\left(\mathrm{k}_{\mathrm{b}}\right) \mathrm{NH}_{4} \mathrm{OH}=1.8 \times 10^{-5}$
$\Rightarrow \mathrm{pk}_{\mathrm{b}}=-\log \mathrm{k}_{\mathrm{b}}=-\log 1.8 \times 10^{-5}=4.74$
$\therefore \mathrm{pk}_{\mathrm{a}}=\mathrm{pk}_{\mathrm{b}}$
$\Rightarrow \mathrm{pH}=\frac{\mathrm{pk}_{\mathrm{w}}}{2}=\frac{14}{2}=7$
45. (4) $\Delta \mathrm{G}^{0}=-2.303 \mathrm{RT} \log \mathrm{K}_{\mathrm{c}}$
$\Delta \mathrm{G}^{\mathrm{o}}>\mathrm{O}$
$\Rightarrow-2.303 \mathrm{RT} \log \mathrm{K}_{\mathrm{c}}>\mathrm{O}$
$\Rightarrow \mathrm{K}_{\mathrm{c}}<1$
46. (2) For AB type salt
$\mathrm{s}=\sqrt{\mathrm{K}_{\mathrm{sp}}}$
\therefore Higher the K_{sp} greater will be the solubility.
$\mathrm{K}_{\text {sp }}$ order (given)
$\mathrm{FeS}>\mathrm{ZnS}>\mathrm{CdS}>\mathrm{HgS}$
47. (4) For basic buffer
$\mathrm{pOH}=\mathrm{pkb}+\log \frac{\text { [conjugate acid }]}{[\text { Base }]}$
$=5+\log \frac{0.01}{0.1}$
$=5+\log 0.1=5-1=4$
$\mathrm{pH}=14-\mathrm{pOH}=14-4=10$
48. (1) HNO_{2} is weak acid and NaNO_{2} is salt of HNO_{2} with NaOH a strong base
$\therefore \mathrm{HNO}_{2}+\mathrm{NaNO}_{2}$ is a buffer.
49. (3) $\mathrm{NaCO}_{3} \longrightarrow$ salt of NaOH (strong base) and $\mathrm{H}_{2} \mathrm{CO}_{3}$ (weak acid)
$\therefore \mathrm{CO}_{3}{ }^{2-}$ will undergo hydrolysis and result in alkaline solution
$\Rightarrow \mathrm{pH}>7$
$\mathrm{KCl}, \mathrm{NaCl}$ and CuSO_{4} all are strong electrolytes and hence will not undergo hydrolysis
$\Rightarrow \mathrm{pH}=7$
50. (4) Correction in Question
$\mathrm{eq}(\mathrm{I}) \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}(\mathrm{g}) \mathrm{K}_{1}$
eq(II) $2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NO}_{2}(\mathrm{~g}) \mathrm{K}_{2}$
$\mathrm{eq}(\mathrm{III}) \mathrm{NO}_{2}(\mathrm{~g}) \rightleftharpoons \frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \mathrm{K}_{3}$
$\mathrm{eq}(\mathrm{IV})=\frac{-\mathrm{eq}(\mathrm{I})}{2}$
$\mathrm{NO}(\mathrm{g}) \rightleftharpoons \frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \mathrm{K}_{4}=\left(\frac{1}{\mathrm{~K}_{1}}\right)^{\frac{1}{2}}$

REDOX REACTION (SOLUTION)

1. (3) Oxidation means addition of E.N element (like ' O ') or increase of ' +ve ' charge.
2. (1) Addition of E.N element is oxidation.
3. (3) $2 \mathrm{Na}_{\text {(s) }}+\mathrm{Cl}_{2} \longrightarrow 2 \mathrm{NaCl}$.

Na losses $2 \mathrm{e}^{-}$(one each) \& Cl gain $2 \mathrm{e}^{-}$.
04. (4) Oxidation involve loss of $\mathrm{e}^{-} \&$ act as reducing agent.
05. (3) Na is oxidised \& H_{2} is reduced.
06. (2) Zn replace Cu from CuSO_{4}.
$\mathrm{Zn}+\underset{\text { (Blue) }}{\mathrm{CuSO}_{4} \longrightarrow} \underset{\text { (Colourless) }}{\mathrm{ZnSO}_{4}}+\mathrm{Cu}$
07. (3) Cu donot replace Zn from ZnSO_{4} i.e. no $\mathrm{Rex}^{\mathrm{n}}$ occurs.
08. (2) Electron is always transffered from low E.N to high E.N. atom.
09. (4) $\mathrm{O}_{3} \rightarrow$ in elemental state o.s is always zero.
10. (2) Oxygen shows $-2,-1,-1 / 2,0 \&$ even ' +2 ' o.s. with ' F '.
11. (1) Oxide ' -2 ' peroxide $=-1$, superoxide $=-1 / 2$
12. (3) $\underset{+1}{\mathrm{LiAlH}} \mathrm{Al}_{4}$
$1+3+4 \mathrm{x}=0$
$4 \mathrm{x}=-4$
$\mathrm{x}=-1$.
13. (4) $\mathrm{Si} \rightarrow+4$
$\mathrm{P} \rightarrow+5$
$S \rightarrow+6$
$\mathrm{Cl} \rightarrow+7$.
14. (3) $\mathrm{Hg}_{2}(\mathrm{I}) \mathrm{Cl}_{2}$ is correct notation.
15. (2) $\stackrel{2+}{\mathrm{Ca}}{ }_{\mathrm{O}}^{-2}+\stackrel{+4}{\mathrm{C}} \mathrm{O}_{2}^{-2} \longrightarrow \stackrel{+2}{\mathrm{Ca}}{\stackrel{+4}{\mathrm{CO}}{ }_{3}^{-2} \text {. no oxidation no. is }}_{\text {(}}$ changed.
16. (1) Above question.
17. (3) As per definition.
18. (4) Sodium is more reactive while Fe is less.

Alkali metals are good oxidising agent.
19. (4) Ag is less reactive than hydrogen $\&$ so donot react to replace H from HCl .
20. (3) Br is more reactive than I_{2} \& So. I_{2} donot replace Br .
$\mathrm{F}_{2}>\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{I}_{2}$
21. (1) Due to more reactive nature of F.
22. (3) More E.N atoms act as oxidising agent i.e F_{2} is strongest O.A.
23. (4) Intermediate O.S. can both oxidise or reduce.
24. (4) $\mathrm{ClO}_{4}^{-} \rightarrow \stackrel{+7}{\mathrm{Cl}}$ is in highest O.S. \& So act as only oxidising agent.
25.

Average O.S. $\Rightarrow \frac{6+4+6}{3}$

$$
\Rightarrow \frac{16}{3}
$$

26.

27. (2)

28. (3)

$2 \mathrm{MnO}_{4}^{-}+\mathrm{Br}^{-}+2 \mathrm{H}^{+} \rightarrow$

$$
2 \mathrm{MnO}_{2}+\mathrm{BrO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O}(\text { In acidic })
$$

$2 \mathrm{MnO}_{4}^{-}+\mathrm{Br}^{-}+\mathrm{H}_{2} \mathrm{O} \rightarrow$

$$
2 \mathrm{MnO}_{2}+\mathrm{BrO}_{3}^{-}+2 \mathrm{OH}^{-}(\text {In acidic })
$$

29. (2) $\mathrm{Zn} \rightarrow$ anode (oxidation)
$\mathrm{Cu} \rightarrow$ cathode (reduction)
30. (3) $\mathrm{E}^{\mathrm{o}}=-\mathrm{ve}{ }^{\prime} \rightarrow$ strong reducing agent.
$\mathrm{E}^{\mathrm{o}}=$ ' +ve ' \rightarrow strong oxiding agent.
31. (4) Theory
32. (2) More E.N. i.e. more oxidising power.

$$
\mathrm{F}_{2}>\mathrm{Cl}_{2}>\mathrm{Br}_{2}>\mathrm{I}_{2}
$$

33. (3)

34. (1) More ' - ve' electrode potential i.e. more reducing power. i.e. $\mathrm{p}>\mathrm{s}>\mathrm{t}>\mathrm{r}>\mathrm{q}$.
35. (3) $\underset{1}{\mathrm{Na}} \underset{2(1)}{\mathrm{H}_{2}} \underset{4(-2)}{\mathrm{PO}_{4}} \rightarrow 1+2+\mathrm{x}-8=5$
$\mathrm{x}=+5$
NaBH_{4}
${ }^{1} \times{ }_{4(-1)}$
$1+x-4=0$
$\mathrm{x}=3$
$\mathrm{KAl}\left(\mathrm{SO}_{4}\right)_{2} \cdot 12 \mathrm{H}_{2} \mathrm{O} \rightarrow \underset{\mathrm{x}}{4(-2)} \mathrm{SO}_{4}{ }^{2-}$
$x+(-8)=-2 \quad x=6$
$\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$
4(1) $2 \times 7(-2)$
$4+2 \mathrm{x}-14=0$
$\mathrm{x}=5$
36. (4) Reduction potential

$$
\propto \frac{1}{\text { reduced }} \propto \text { Oxidising power. }
$$

37. (2) KMnO_{4} efficently work in acidic medium.
$\stackrel{+7}{\mathrm{Mn} \mathrm{O}_{4}^{-}} \longrightarrow \mathrm{Mn}^{+2}$
MnO_{4}^{-}in basic medium with I^{Θ}
$\mathrm{H}_{2} \mathrm{O}+2 \mathrm{MnO}_{4}^{-}+\mathrm{I}^{-} \longrightarrow 2 \mathrm{MnO}_{2}^{+4}+\mathrm{I}_{2}+2 \mathrm{OH}^{-}$
38. (3) $\mathrm{O}=\stackrel{+2}{\mathrm{C}}=\stackrel{\mathrm{o}}{\mathrm{C}}=\stackrel{+2}{\mathrm{C}}=\mathrm{O}$
39. (3) $\underset{x_{2(-2)}}{\mathrm{S} \mathrm{O}_{2}} \mathrm{x}+(-4)=0 \quad \mathrm{x}=4$

Intermediate O.S. [S $\rightarrow-2$ to +6]
So, SO_{2} act as both oxidising as well as reducing agent.
40. (1) $\underset{\text { (unstable) }}{\stackrel{+2}{\mathrm{Ag} \mathrm{F}} \mathrm{F}_{2}} \rightarrow \stackrel{+}{\mathrm{A} g \mathrm{~F}}+\mathrm{F}^{\Theta}$.
(so it is strong oxidising agent).
Ag^{2+} have more tendency to gain $1 \mathrm{e}^{-}$.
oxidation
41. (2)

So; $\mathrm{N}_{2} \mathrm{H}_{4}$ act as reducing agent.
[Slight mistake in question]
42. (2) P_{4} molecule is both oxidation \& reduced in same rex ${ }^{n} \&$ so this rex ${ }^{n}$ is called disproportation rex ${ }^{n}$.
43. (3) $\mathrm{f} \rightarrow-1 ; \mathrm{Ne} \rightarrow 0$
$\mathrm{Cs} \rightarrow+1 ; \mathrm{I} \rightarrow-1$ to +7
reduced
44. (2) $\mathrm{Ci}_{2}+\mathrm{H}_{2} \mathrm{O}_{2}^{-1} \longrightarrow \mathrm{HCl}^{-1}+\mathrm{O}_{2}{ }^{0}$ oxidised
$\mathrm{H}_{2} \mathrm{O}_{2} \rightarrow$ oxidising agent.
45. (4) $\mathrm{N}_{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{NO}$ (Combination).
$2 \mathrm{~Pb}\left(\mathrm{NO}_{3}\right)_{2} \rightarrow 2 \mathrm{PbO}+4 \mathrm{NO}_{2}+\mathrm{O}_{2}$ (decomposition).
$\mathrm{NaH}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NaOH}+\mathrm{H}_{2}$ (displacement).
$2 \mathrm{NO}_{2}+2 \mathrm{OH}^{-} \rightarrow \mathrm{NO}_{2}^{-}+\mathrm{NO}_{3}^{-}+\mathrm{H}_{2} \mathrm{O}$ (disproportation).
i) s ii) r iii) q iv) p
46. (1) $\mathrm{Zn}+\underset{\text { (Blue) }}{\mathrm{Cu}^{2+}} \longrightarrow \underset{\text { (Colouless) }}{\mathrm{Zn}^{2+}}+\mathrm{Cu}$
47. (2) O.N of oxygen may be $-1,-2,-1 / 2$ or even ' +ve ' in same compounds.
48. (4)

TUTE PVT.LTDreduce
49. (1)

(disproportanation reaction)
50. (1) Br_{2} is stronger oxidising agent than $\mathrm{I}_{2} \&$ So Br_{2} oxidise mole i.e. from +2 to +6 while I_{2} cannot.

p-BLOCK ELEMENTS [GROUP 13 \& 14] (SOLUTION)

1. (3) Increasing order of atomic radii of group-13 elements is $\mathrm{Ga}(135 \mathrm{pm})<\mathrm{Al}(143 \mathrm{pm})<\operatorname{In}(167 \mathrm{pm})$ $<\mathrm{Tl}$ (170 pm)
2. (2) Sucessive ionisation enthalpy values increases in the order $\Delta_{\mathrm{i}} \mathrm{H}_{1}<\Delta_{\mathrm{i}} \mathrm{H}_{2}<\Delta_{\mathrm{i}} \mathrm{H}_{3}$
3. (1) Aluminium in air is ordinarily protected by a molecule-thin layer of its own oxide.
4. (2) COO reacts with $\mathrm{B}_{2} \mathrm{O}_{3}$ to give blue bead of $\mathrm{CO}\left(\mathrm{BO}_{2}\right)_{2}$
5. (1) $3 \mathrm{~B}_{2} \mathrm{H}_{6}+2 \mathrm{NH}_{3} \longrightarrow \mathrm{~B}_{2} \mathrm{H}_{6} \cdot 2 \mathrm{NH}_{3}$
$\mathrm{B}_{2} \mathrm{H}_{6} .2 \mathrm{NH}_{3} \xrightarrow{450 \mathrm{~K}} 2 \mathrm{~B}_{3} \mathrm{~N}_{3} \mathrm{H}_{6}+3 \mathrm{H}_{2}$
6. (1) On heating orthoboric acid $\left(\mathrm{H}_{3} \mathrm{BO}_{3}\right)$ at 370 K or above, it changes to metaboric acid acid $\left(\mathrm{HBO}_{2}\right)$ on further heating this yields boric oxide $\mathrm{B}_{2} \mathrm{O}_{3}$
7. (2) $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}+2 \mathrm{HCl}+5 \mathrm{H}_{2} \mathrm{O} \longrightarrow 2 \mathrm{NaCl}+4 \mathrm{H}_{3} \mathrm{BO}_{3}$
8. (3) Four $2 \mathrm{C}-2 \mathrm{e}^{-}$bonds and two $3 \mathrm{C}-2 \mathrm{e}^{-}$bonds.
9. (2) Copper is a better conductor as compared to aluminium, aluminium is about 40% less conductive than copper

Since 1999
10. (3) G-14 General electronic configuration is $n s^{2} n p^{2}$
11. (3) Due to ineffective shielding of the d and f orbital, Pb has a higher ionization enthalpy than Si .
12. (3) Boron, Silicon, germanium, arsenic, antimony, tellurium and polonium all are radioactive.
13. (4) Lead does ot show catenation

AREER INST

14. (4) 1,2 and 3 are the resonance structures of CO_{2}. Carbondioxide, has three resonance structures, out of which one is a major contributor
15. (3) $\mathrm{Fe}_{2} \mathrm{O}_{3}+\mathrm{CO} \rightarrow \mathrm{Fe}+\mathrm{CO}_{2}$
16. (2) The tendency to show (+2) oxidation state increases as we move down the group this is due to inert pair effect. Thus, the stability of elements in +2 O.S increases as we move down the group in the order $\mathrm{C}<\mathrm{Si}<\mathrm{Ge}<\mathrm{Sn}<\mathrm{Pb}$
17. (2) $\mathrm{AlCl}_{3}+3 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{HCl}$.
18. (3) Limestone is heated to produce carbondioxide
$\mathrm{CaCO}_{3} \xrightarrow{\Delta} \mathrm{CaO}+\mathrm{CO}_{2}$.
19. (1) Buckminster fullerence is the first discovered fullerene which contains 60 carbon atoms. The molecule has shape of soccer ball in which 12 five membered and 20 Six membered rings are present.
20. (4) Orthoboric acid consists of 6 hydrogen bonds.
21. (3) Mixture of CO and H_{2} is known as water gas
22. (4) The chain length of silicon polymer can be controlled by adding $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiCl}$ which block the end [PTO]

23. (4) Silicon dioxide is a covalent, three-dimensional network solid in which silicon atom is bonded to four oxygen atoms which are arranged tetrahedrally around it and each oxygen atom is attached to two silicon atoms by covalent bonds.

Each corner is further shared by another tetrahedron.

The entire crystal may thus be considered as a giant molecule in which eight-membered rings are formed with alternate silicon and oxygen atoms.
24. (2) $\mathrm{SiO}_{2}+4 \mathrm{HF} \rightarrow \mathrm{SiF}_{4}+2 \mathrm{H}_{2} \mathrm{O}$.
25. (3) $\mathrm{SiO}_{2}+2 \mathrm{NaO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SiO}_{3}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{SiO}_{2}+4 \mathrm{HF} \rightarrow \mathrm{SiF}_{4}+2 \mathrm{H}_{2} \mathrm{O}$.
26. (4) Boron is considered as typical non-metal.
27. (2) Meta borate is formed in borax bead test
$\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O} \xrightarrow{\Delta} \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7}+10 \mathrm{H}_{2} \mathrm{O}$
\qquad

Blue bead
28. (1) A combustible mixture of nitrogen, carbon monoxide, and hydrogen are called producer gas
29. (2) ZSM-5 converts alcohol into gasoline
30. (4) Weak acid and its salt with strong base acts as acidic buffer $\left[\mathrm{H}_{2} \mathrm{CO}_{3} / \mathrm{NaHCO}_{3}\right]$

This buffer solution does not outer the pH of blood hence it help to maintain pH of blood between 7.26 to 7.42 .
31. (4) Quartz, cristobalite and tridymite all are crystalline form of silica.
32. (1) $\mathrm{HCOOH} \xrightarrow{\text { Conc. } \mathrm{H}_{2} \mathrm{SO}_{4}} \mathrm{CO}+\mathrm{H}_{2} \mathrm{O}$
33. (1) Fullerenes have closed cage like structures unlike diamond and graphite. They donot have dangling bonds.
34. (1) $1^{\text {st }}$ member of each group in p-block has $2 p$ orbitals able to form strongest $p \pi-p \pi$ bonds. Due to its size.
35. (2) Graphite is the most thermodynamic stable form of carbon.
36. (2) Fact based
37. (3) $\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O} \xrightarrow{\Delta} \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \xrightarrow{\Delta}$

38. (2) Fact based
39. (3) Due to smaller size of oxygen atom, $\mathrm{Si}-\mathrm{O}$ bond is stronger than $\mathrm{Si}-\mathrm{Si}$ bond.
40. (1) Fact based
41. (4) Gallium has smaller atomic radius than aluminium because the d-orbital which is highly diffused offers poor screening effect which results in increased nuclear charge So, radius decreases.
42. (1) PbI_{4} does not exist because the iodine reduces the lead to $\mathrm{Pb}(\mathrm{II})$ and the Pb oxidises the iodide to iodine
(I2) since the iodine is not a reducing agent to reduce $\mathrm{Pb}(\mathrm{II})$ to Pb , the compound PbI_{2} is formed.
43. (1) The presence of $4^{\text {th }}$ shell increases the size of gallium atom hence, an increase in ionization enthalpy due to high Zeff overcomes the decrease in ionization due to increased size as a result the ionization of gallium is close to that of aluminium.
44. (4) $\mathrm{NaBH}_{4}+\mathrm{I}_{2} \rightarrow \mathrm{~B}_{2} \mathrm{H}_{6}+2 \mathrm{NaI}+\mathrm{H}_{2}$
$3 \mathrm{NaBH}_{4}+4 \mathrm{BF}_{3} \rightarrow 3 \mathrm{NaBF}_{4}+2 \mathrm{~B}_{2} \mathrm{H}_{6}$
$2 \mathrm{BF}_{3}+6 \mathrm{NaH} \xrightarrow{450 \mathrm{~K}} \mathrm{~B}_{2} \mathrm{H}_{6}+6 \mathrm{NaF}$
45. (2) Boron atom in trihalides has only six electrons in valence shell and can accept $\mathrm{e}^{-} \mathrm{S}$. So, acts as Lewis acid. Due to back bonding the relative Lewis acid strength is $\mathrm{BI}_{3}>\mathrm{Br}_{3}>\mathrm{BCl}_{3}>\mathrm{BF}_{3}$
46. (4) Fact based
47. (3) $\mathrm{B}_{2} \mathrm{H}_{6}$ consists of two electrons each, three centered bonds. Each boron atom is in a link with four hydrogen atoms. This makes tetrahedral geometry hence boron is sp^{3} hybridised
48. (3) Carbon shown maximum catenation and ability to form $p \pi-p \pi$ multiple bonds.
49.

Hybridisation $=\mathrm{sp}^{3} \mathrm{~d}^{2}$
50. (3) When air is passed over red-hot coke producer gas is obtained
$2 \mathrm{C}+\mathrm{O}_{2}+\mathrm{N}_{2} \rightarrow 2 \mathrm{CO}+\mathrm{N}_{2}$

1. (4) Propanone and propanal are functional group isomer to each other.
2. (4)
3. (1)

6-methyl (secondary prifix)
04. (3)

3-ethyl-4, 4-dimethylheptane
05. (4)
 Heterocyclic nonaromatic

Silnce 1999

Tetrahydro furan (THF)
06. (4) Methyl fluoride

07. (3) $-\mathrm{NO}_{2}(-\mathrm{I},-\mathrm{R})$
08. (3)

Hexane-2, 4-dione
09. (3) Cyclohexene \Rightarrow Alicyclic compound
10. (2)

11.

12. (3) C_{60} cluster
13. (1) Homologous series compounds differ molecular formula
14. (3) Carbamoyl $\Rightarrow 2^{\circ}$ prefix $\Rightarrow-\mathrm{CONH}_{2}$ functional group in IUPAC
15. (4)

16. (3)

17. (4) 2, 3-dibromo-1-phenyl pentane

18. (2) 2, 2-Dimethyl propane and 2-methyl butane are chain isomer to each other.
19. (3) $\mathrm{CH}_{3}-\mathrm{C}^{\mathrm{I}} \oplus$ electrophile
20. (3) Phosphoric acid $\left(\mathrm{H}_{3} \mathrm{PO}_{4}\right)$
21. (4)
 and

\Rightarrow Resonance contributors
22. (3)

$\mathrm{C}_{1}-\mathrm{C}_{3} \Rightarrow \mathrm{sp}^{2}-\mathrm{sp}^{3}$
23. (1)

 staggred conformation of ethane
24. (2) Only one structure exhibits geometrical isomers
25. (4)
26. (3) Correct IUPAC is 5-sec-butyl-4-isopropyldecane
27. (2)

28. (3) $-\mathrm{COCl}>-\mathrm{CONH}_{2}>-\mathrm{CN}>-\mathrm{CHO}$
29. (4) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{Cl}+\mathrm{NaNH}_{2} \rightarrow \mathrm{CH} \equiv \mathrm{CH}$.
30. (1)

Hexachlorobenzene
31. (2)

32. (2)

33. (4)

sp^{3}

all non-aromatic
34. (3)

35. (2) $\mathrm{CH} \equiv \mathrm{C}-\mathrm{H} \rightarrow$ more acidic

36. (3) $\mathrm{PbS} \rightarrow$ Black
$\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4} \cdot 12 \mathrm{MOO}_{3} \rightarrow$ yellow
$[\mathrm{Fe}(\mathrm{SCN})]^{2+} \rightarrow$ Blood red
$\left[\mathrm{Fe}(\mathrm{CN})_{5} \mathrm{NOS}^{-4} \rightarrow\right.$ violet
37. (4) \rightarrow Electromeric is temporary effect.
\rightarrow Electromeric more dominated than inductive effect.
38. (2) BP \propto surface area.
$\mathrm{Bp} \rightarrow$ n-pentane $>$ 2-Methylbutane $>$ 2, 2-Dimethyl propane $>$ Methane .
39. (4) Energy \Rightarrow cannonical form $>$ Resonance hybrid.
40. (1) $\mathrm{CH}_{3}-\mathrm{Br} \rightarrow \mathrm{CH}_{3}^{\mathrm{C}}-------\stackrel{\delta-}{\mathrm{Br}}$
41. (3) Aromatic compounds are non-polar and burns with sooty flame.
42.

43. (1)

44. (1) n - hexane $\xrightarrow{\text { Isomerisation }} 2$ - methylpentane n - hexane $\xrightarrow{\text { Pyrolysis }}$ methane + propene + ethene n -hexane $\xrightarrow{\text { Aromatisation }}$ Benzene
$\mathrm{CH}_{4} \xrightarrow{\text { Oxidation }}$ methanal
45. (4) ethane $\rightarrow \mathrm{o}^{\mathrm{o}} \rightarrow$ eclipsed
$60^{\circ} \rightarrow$ staggered
stability staggered $>$ eclipsed
46. (1)

47. (4) $\mathrm{C}-\mathrm{O}$ bond is more polar than $\mathrm{C}-\mathrm{S}$ bond.
48. (1) Both are does not having octet configuration. So according to electronegativity rule I is more stable than II.
49. (4) CCl_{4} is covalent compound it does not give ppt with AgNO_{3}.
50. (1)

HYDROCARBONS (SOLUTION)

1. (2)

2. (3)

3. (2) Diagram from NCERT.
4. (4)

5. (3) CH_{4} can't be prepared.
6. (3)
 1999
wurtz fittig
7. (1) $\mathrm{BP} \propto \frac{1}{\text { Branching }}$ (Isomers).
8. (1) $1^{\circ} \mathrm{H}=6 \times 1=6$
$1^{\circ} \mathrm{H}=3 \times 1=3$
$2 .{ }^{\circ} \mathrm{H}=2 \times 3.8=7.6$
$3^{\circ} \mathrm{H}=1 \times 5=5$
21.6
$2^{\circ} \mathrm{H} \%$ yield $=\frac{7.6}{21.6} \times 100=35.18 \%$
9. (3)
10. (4)

11. (1)

12. (2) Pyrolysis
13. (1)

14. (3)

15. (4)

16. (3) In Kharasch effect reaction follows free radical addition
17. (4)

A
B
C

18. (2)

19. (2)

20.

$\mathrm{A}=$

3-ethyl pent-2-ene
21.
(4)

22.
(3)

23.
(2)

24.
(3)

(A)
25. (3) $r_{E A R} \propto$ nucleophilicity of alkene (stability of $\mathrm{C} \oplus$).

26. (2)

cyclobromonium ion
32. (2)

33. (1)

27. (3) $r_{E A R} \propto$ nucleophility of alkane $\mathrm{r}_{\text {EAR }} \propto$ stability of $\mathrm{C} \oplus$.
$\mathrm{R}>\mathrm{Q}>\mathrm{P}$.
28.

29. (2)

773K
30. (1)

16σ and 4π (option incorrect)
31. (4) No change in B. Angle and B.length in conformers of ethane.

34. (1)

35. (3)

36. (2) Hydrocarbons are also used for the manufacture of polymers like polythene, polystyrene due to presence of unsaturated bonds.
37. (3) Wurtz reaction is prefered for the preparation of higher alkanes containing even no. of carbon atoms
38. (4) Rate of nitration of benzene and hexadeutero benzene are not different since removal of H is not slow step.
39. (2) Both are correct answers.
40. (2) Both are correct answers.
41. (1) Alkene that can form stable carbocation will react faster.
42. (3) Alkene with even no. of carbon atom have higher melting point than adjacent alkane of odd no. of carbon atoms. (Incorrect statement)

Melting point \propto molar mass
propane has least melting point. (Exception)
43. (2) In kolbe's electrolytic method generally carbon dioxide liberates at anode while H_{2} (Hydrogen gas) liberate at cathode.

Methane can not be prepared by Kolbe's electrolytic method.
44. (4) HCl do not show peroxide effect therefore 1,4 addition
45. (2) Propane gives 2-bromo propane when reacted with $\mathrm{HBr} \&$ it is free radical substitution.
46. (1) (A)-(p,r); (B)-(p,r), (C)-(p,r), (D)-(p,r)
pi bonded functional groups is -M \& lone pair functional group is +M .
47. (4)
 $\overbrace{0}^{\infty}:$ resonance and non aromatic.

48. (3)

49. (4) $2 \mathrm{CHI}_{3}+6 \mathrm{Ag} \longrightarrow \mathrm{HC} \equiv \mathrm{CH}$

 Formation of cation is R.D.S. (Classical or non-classical carbocation)

Formation of cation is R.D.S. (Classical or non- classical carbocation)
 , Formation of cation is R.D.S. (Classical or nonclassical carbocation) \& Racemic mixture

Racemic mixture

